Manas Gartia


Assistant Professor of Mechanical Engineering

3290C Patrick F. Taylor Hall

Department of Mechanical & Industrial Engineering

Louisiana State University

Baton Rouge, LA 70803


Gartia Laboratory Website

Google Scholar Profile - Gartia (click me)

Educational Background

  • Ph.D., Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, 2013
  • M.S., Nuclear Engineering and Technology, Indian Institute of Technology (IIT), Kanpur, India, 2003
  • B.S., Mechanical Engineering, University College of Engineering, Burla, India, 2000

Research Goal

Our goals under each of the themes is to understand the following:


Computational Themes

  1. Physics and dynamics of interactions (electronic, optical and physical) on the nanoscale
  2. Molecular interactions with surfaces which are important for developing biosensors
  3. Numerical modeling of the light-matter interaction
  4. Electron injection and spin-orbit coupling for energy devices

Nanomanufacturing Themes

  1. New photovoltaics design (enhanced efficiency, low cost, scalable)
  2. Metamaterials (Communication, Quantum Optics)
  3. Hybrid optoelectronics devices (enhanced functionality)

Themes with Strong Components in Translational Health, Biotechnology, and Agriculture

  1. Molecular biophotonics (Optics and Spectroscopy tools).
  2. Label free sensor development (Point-of-Care, Homeland Security, Agriculture)
  3. To solve clinical problems (early detection and diagnosis of cardiovascular diseases, cancer, malaria)

Research Overview

The vision of our research group is to provide solutions to practical challenges in energy, healthcare, and environmental industry and simultaneously advance basic science and engineering. Our research will provide students both hands-on experience in optics, photonics, and spectroscopy as well as develop critical thinking in them to solve problems innovatively and creatively. The main activities of our research group centered in the broad areas of Electromagnetics, Optics & Spectroscopy, Nanophotonics, Plasmonics, and Metamaterials. We are currently exploring topics in following major themes:

  • Integration of external sensors (e.g. electrochemical, impedance, plasmonic) to smartphone for application in Translational Health, Biotechnology, mobile Health (mHealth), and Agriculture
  • Surface Enhanced Raman Spectroscopy (SERS)
  • Novel nanomaterial interaction with plasmonics (e.g. graphene, BN, Chalcogenide, MoS2, carbon nanotubes, GeSbTe, etc.)
  • New design for flexible transistors, supercapacitors, and battery
  • Nuclear detector technology for Homeland Security, and Agriculture applications
  • 3D printing, Nanomanufacturing, and additive manufacturing for supporting continuous monitoring of biofluids, and environmental sensing applications
  • Microfluidics
  • Microscopy (e.g. Fluorescence imaging of cells and nanomaterials, Second Harmonic Generation (SHG) imaging, Fluorescence Lifetime Imaging (FLIM))
  • Computational Nanophotonics [Density Functional Theory (DFT) for Quantum Chemistry calculation; Finite Difference Time Domain (FDTD) methods for optics and photonics; Finite Element Method (FEM) for Multiphysics]

We are an interdisciplinary team. Our major work includes nanofabrication, characterization, system integration, biology, and nanophotonic simulations. We are constantly looking for students with expertise and interest in Materials Science, Physics, Chemistry, Mechanical Engineering, Surface Functionalization, Bioconjugation, Basic Biology, Mobile Apps Development, System Automation, Robotics, Lasers, Optics and Spectroscopy.



+ Large-area flexible plasmonic sensor fabrication

+ Combining plasmonics with optical resonator to decrease the line-width of fluorescence emission

+ High-throughput drug screening on plasmonic sensor

+ Bi-functional (colorimetric sensing and Raman spectroscopy) plasmonic sensor

+ 3D Live cell imaging on plasmonic substrate

Surface Enhanced Raman Spectroscopy (SERS)

+ Large-area fabrication of periodic nanopillar SERS substrate

+ Electric field modulation of SERS

+ Wafer-scale SERS substrate using thermal dewetting

Mobile/Wireless Integrated Sensors

+ Smartphone integrated electrochemical sensor

+ Wireless integrated nitrate sensor for environmental water sensing

Computational Work

+ New design of plasmonic sensor to achieve high sensitivity (using FDTD)

+ Molecular Dynamics simulation to understand metal-molecule interaction

+ Quantum Chemistry calculation (using DFT) to understand charge transfer theory

+ COMSOL simulation of whispering gallery mode (WGM)


+ Making nanostructures on top of microstructures

+ Nanopillar on Si to improve solar cell efficiency

+ Understanding defect states in Si nanopillar structures

Metal-Molecule Interaction

+ Fluorescence Lifetime Imaging Microscopy of dyes on plasmonic surface

+ Density Functional Theory (DFT) to understand metal-molecule interaction

Selected Publications

S. K. Misra, G. Ghoshal, M. R. Gartia, Z. Wu, A. K. De, M. Ye, C. R. Bromfield, E. M. Williams, K. Singh, K. V. Tangella, L. Rund, K. Schulten, L. B. Schook, P. S. Ray, E. C. Burdette, and D. Pan, Trimodal Therapy: Combining Hyperthermia with Repurposed Bexarotene and Ultrasound for Treating Liver Cancer, ACS Nano, DOI: 10.1021/acsnano.5b05974 (2015).

M. R. Gartia, S. K. Misra, M. Ye, A. Schwartz-Duval, L. Plucinski, X. Zhou, D. Kellner, L. T. Labriola, and D. Pan, Point-of-service, quantitative analysis of ascorbic acid in aqueous humor for evaluating anterior globe integrity, Scientific Reports: Nature Publishing Group 5, Article number: 16011 (2015).

L. Plucinski, M.R. Gartia, W.R. Arnold, A. Ameen, T.W. Chang, A. Hsiao, G.L. Liu, A. Das, Substrate binding to cytochrome P450-2J2 in Nanodiscs detected by nanoplasmonic Lycurgus cup Arrays, Biosensors and Bioelectronics, 75, 337–346 (2015).

T. W. Chang, X. Wang, A. Hsiao, Z. Xu, G. Lin, M. R. Gartia, X. Liu, G. L. Liu, Bifunctional Nano Lycurgus Cup Array Plasmonic Sensor for Colorimetric Sensing and Surface-Enhanced Raman Spectroscopy, Advanced Optical Materials, DOI: 10.1002/adom.201500092 (2015) [COVER ARTICLE].

A. Hsiao, M. R. Gartia, T.W. Chang, X. Wang, P. Khumwan, G. L. Liu, Colorimetric plasmon resonance microfluidics on nanohole array sensors, Sensing and Bio-Sensing Research, 5, 24–32 (2015).

A. Ameen, M. R. Gartia, A. Hsiao, T. W. Chang, Z. Xu and G. L. Liu, Ultra-Sensitive Colorimetric Plasmonic Sensing and Microfluidics for Biofluid Diagnostics using Nanohole Array, Journal of Nanomaterials vol. 2015, Article ID 460895 (2015).

X. Wang, M. R. Gartia, J. Jiang, T. W. Chang, J. Qian, Y. Liu and G. L. Liu, Audio Jack based Miniaturized Mobile Phone Electrochemical Sensing Platform, Sensors & Actuators: B. Chemical, 209, 677–685, (2015).

M. R. Gartia, S. Seo, J. Kim, T.-W. Chang, G. Bahl, M. Lu, G. L. Liu, and J. G. Eden, Injection-Seeded Optoplasmonic Amplifier in the Visible, Scientific Reports: Nature Publishing Group, 4, 6168 (2014).

S. Seo, M. R. Gartia, and G. L. Liu, Vertically Stacked Plasmonic Nanoparticles in a Circular Arrangement: a Key to Colorimetric Refractive Index Sensing, Nanoscale, 6, 11795-11802 (2014).

T. W. Chang, M. R. Gartia, S. Seo, A. Hsiao, and G. L. Liu, Wafer-Scale Backplane Assisted Resonating Nanoantenna Array (BARNA) SERS Device Created by Tunable Thermal Dewetting Nanofabrication, Nanotechnology, 25,145304 (2014).

M. R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B. T. Cunningham, T. C. Bond, and G. L. Liu, Colorimetric Plasmon Resonance Imaging Using Nano Lycurgus Cup Arrays, Advanced Optical Materials, 1, 68-76 (2013) [COVER ARTICLE].

M. R. Gartia, M. Lu, and G. L. Liu, Surface Plasmon Coupled Whispering Gallery Mode for Guided and Free-Space Electromagnetic Waves, Plasmonics, 8 (2), 361-368 (2013).

M. R. Gartia, B. Braunschweig, T. W. Chang, P. Moinzadeh, B. S. Minsker, G. Agha, A. Wieckowski, L. Keefer, and G. L. Liu, MicroElectronic Wireless Nitrate Sensor Network for Environmental Water Monitoring, Journal of Environmental Monitoring, 14, 3068-3075 (2012). [COVER ARTICLE].

Z. Xu, J. Jiang, M. R. Gartia, and G. L. Liu, Monolithic Integrations of Slanted Silicon Nanostructures on 3D Microstructures and Their Application to Surface Enhanced Raman Spectroscopy, Journal of Physical Chemistry C,116 (45) 24161–24170 (2012).

Y. Chen, E. R. Cruz-Chu, J. C. Woodard, M. R. Gartia, K. Schulten, and G. L. Liu, Electrically Induced Conformational Change of Peptides on Metallic Nanosurfaces, ACS Nano, 6 (10), 8847–8856 (2012).

M. R. Gartia, J. P. Eichorst, R. M. Clegg, and G. L. Liu, Lifetime Imaging of Radiative and Non-Radiative Fluorescence Decays on Nanoplasmonic Surface, Applied Physics Letters, 101, 023118 (2012).

M. R. Gartia, Y. Chen, and G. L. Liu, Photoluminescence and Cathodoluminescence from Nanostructured Silicon Surface,Applied Physics Letters, 99, 151902 (2011).

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, Ultrahigh Throughput Silicon Nanomanufacturing by Simultaneous Reactive Ion Synthesis and Etching, ACS Nano, 5 (10), 8002–8012 (2011).

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, Enhanced 3D Fluorescence Live Cell Imaging on Nanoplasmonic Substrate, Nanotechnology, 22, 365203 (2011).

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, Surface Plasmon Enhanced Broadband Spectrophotometry on Black Silver Substrates, Applied Physics Letters, 98, 241904 (2011).

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, Quick Detection Of Contaminants Leaching from Polypropylene Centrifuge Tubes with Surface-Enhanced Raman Spectroscopy and Ultraviolet Absorption Spectroscopy,Journal of Raman Spectroscopy, 42, 1939–1944 (2011).

M. R. Gartia, T. C. Bond, and G. L. Liu, Metal-Molecule Schottky Junction Effects in Surface Enhanced Raman Scattering, Journal of Physical Chemistry A, 115 (3), 318–328 (2011) [COVER ARTICLE].

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J.A. Britten, C. Larson, R. Miles, M. Bora, A.S.P Chang, T.C. Bond, and G.L. Liu,Rigorous Surface Enhanced Raman Spectral Characterization of Large-Area High-Uniformity Silver-Coated Tapered Silica Nanopillar Arrays, Nanotechnology, 21, 395701 (2010).

A. K. Nayak, M.R. Gartia, and P.K. Vijayan, Nanofluids: A Novel Promising Flow Stabilizer in Natural Circulation Systems, AIChe Journal, 55, 1, 268-274 (2009).

A. K. Nayak, M.R. Gartia, and P.K. Vijayan, Thermal-hydraulic Characteristics of a Single-Phase Natural Circulation Loop with Water and Al2O3 Nanofluids, Nuclear Engineering and Design, 239, 3, 526-540 (2009).

A. K. Nayak, Vikas Jain, M.R. Gartia, Hari Prasad, A. Anthony, S.K. Bhatia, and R.K. Sinha, Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology, Reliability Engineering & System Safety, 94, 6, 1064-1075 (2009).

A. K. Nayak, M.R. Gartia, and P.K. Vijayan, An Experimental Investigation of Single-Phase Natural Circulation Behavior in a Rectangular Loop with Al2O3 Nanofluids, Experimental Thermal and Fluid Science, 33, 1, 184-189 (2008).

A. K. Nayak and M.R. Gartia, Study on the Thermal-Hydraulics Characteristics of a Boiling Two-Phase Natural Circulation Loop with Nanofluids, Kerntechnik, 73, 5–6, 234 (2008).

P. K. Vijayan, A.K. Nayak, D. Saha, and M.R. Gartia, Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops, Science and Technology of Nuclear Installations, doi:10.1155/2008/672704 (2008).

A. K. Nayak, M.R. Gartia, A. Antony, G. Vinod, and R.K. Sinha, Passive system reliability analysis using the APSRA methodology,Nuclear Engineering and Design, 238, 1430-1440 (2008).

A. K. Nayak, Vikas Jain, M.R. Gartia, A. Srivastava, Hari Prasad, A. Anthony, A.J. Gaikwad, S. Bhatia, and R.K. Sinha, Reliability assessment of passive containment isolation system using APSRA methodology, Annals of Nuclear Energy, 35, 12, 2270-2279 (2008).

M. R. Gartia, D.S. Pilkhwal, P.K. Vijayan, and D. Saha, Analysis of Metastable Regimes in a Parallel Channel Single-Phase Natural Circulation System with RELAP5/ MOD 3.2, International Journal of Thermal Sciences, 46, 1064–1074 (2007).

M. R. Gartia, P.K. Vijayan, and D.S. Pilkhwal, A Generalized Flow Correlation for Two Phase Natural Circulation Loops, Nuclear Engineering and Design, 236, 17, 1800-1809 (2006).