Research Highlights

AugarIn a paper published in the journal Science, the Pierre Auger Collaboration reports observational evidence demonstrating that cosmic rays with energies a million times greater than that of the protons accelerated in the Large Hadron Collider come from much further away than from our galaxy.
Professor Jim Matthews, former co-spokesperson of the Auger Collaboration, works with more than 500 scientists from 17 countries on the world’s leading science project for the exploration of the highest energy cosmic rays to elucidate the origins and properties of the most energetic particles in the Universe. The collaboration is reconstructing the path of the Universe's most energetic cosmic rays, bringing new insights into the origin and nature of this intergalactic phenomenon. Read More
CALETCALET (CALorimetric Electron Telescope), a Japan-Italy-US experiment on the International Space Station (ISS), has successfully carried out a high-precision measurement of the cosmic ray electron spectrum up to 3 tera electron volts (TeV). This experiment, based on two years of data taken on the Exposed Facility on the ISS, is the first to make direct measurements of such high energy electrons in space. The CALET team published its first results in Physical Review Letters November 1 (O. Ariadne et al., Physical Review Letters 119, 181101, 2017). The measured spectrum provides a hint of a feature in the high energy spectrum that may be due to a nearby high energy source (e.g., a pulsar) or the annihilation of dark matter particles. CALET expects to take data on the ISS for an additional 3 years, and increase its current statistics by approximately a factor of 6. Read More
launey book coverKristina Launey published a book "Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: A Symmetry-Guided Perspective"
This book is a unique collection of reviews that discuss emergent phenomena in the world of protons and neutrons, and that of quarks and gluons, as viewed from first principles, microscopic considerations, and analysis of experimental data. A special theme resonates throughout the book: the important role of symmetries, exact and approximate, in exposing emergent features and guiding large-scale nuclear modeling, such as Lattice Quantum Chromodynamics, Effective Field Theory, Ab Initio Models, Quantum Monte Carlo Methods, and Density Functional Theory. Read more
3rd detectionThe Laser Interferometer Gravitational-wave Observatory, or LIGO, has made a third detection of gravitational waves, which are ripples in space and time, demonstrating that a new window in astronomy has been firmly opened. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole. Read MoreThe Laser Interferometer Gravitational-wave Observatory, or LIGO, has made a third detection of gravitational waves, which are ripples in space and time, demonstrating that a new window in astronomy has been firmly opened. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole. Read more
JPullin coverorge Pullin co-edited a book "Loop quantum gravity: the first 30 years"
Jorge Pullin has co-edited with Abhay Ashtekar, the Eberly Chair of Physics at the Pennsylvania State University, the volume "Loop quantum gravity: the first 30 years". It includes eight chapters by young emerging leaders of the field providing a snapshot of its state of the art, including one by LSU's Ivan Agullo and Parampreet Singh. The book is part of the series that World Scientific Publishing Co. of Singapore is putting out to celebrate the 100 years of Einstein's General Theory of Relativity. According to the publisher, It will include "two dozen excellent monographs written by top-notch authors from the international gravitational community". Read more
 
 

Read More

DEPARTMENT EVENTS

 

 

 

Back to top