Research Highlights

Wilde book coverMark Wilde's Second Edition of his book "Quantum Information Theory" has been published. Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists. Read more
super-kamiokandeLSU Physicists Collaborate on T2K CP Violation Results to Explain Workings of Universe:  LSU physicists Thomas Kutter and Martin Tzanov were among the international T2K Collaboration who recently announced their findings on the symmetry between neutrino and antineutrino oscillation. With newly collected antineutrino data, T2K has performed a new analysis, fitting both neutrino and antineutrino modes simultaneously. T2K’s new data continue the trends observed in 2015, which is a preference for maximal disappearance of muon neutrinos, as well as a discrepancy between the electron neutrino and electron antineutrino appearance rates. Read more
photo: waveiconThe LIGO Scientific Collaboration and the Virgo collaboration identify a second gravitational wave event in the data from Advanced LIGO detectors. On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves-ripples in the fabric of spacetime-for the second time. The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. Read more 

photo: researchers
Extreme light from frozen argon LSU physicists Mette Gaarde, Mengxi Wu, Kenneth Schafer, and Dana Browne, in collaboration with a team of researchers at SLAC/Stanford University have directly compared the ultrafast, extreme ultraviolet radiation emitted by argon atoms when they are in their gas phase or in their weakly bound solid phase and found significant differences between them, as reported today in the journal Nature. The results yield new clues about how energetic electrons in a solid behave, and may yield new compact sources of short wavelength radiation. Read more

Read More





Back to top