Girls Do Chemistry

In general, female and male students perform equally well in mathematics and science on standardized tests, but girls start to lose interest in STEM subjects during their middle school years. According to “Generation STEM: What Girls Say about Science, Technology, Engineering, and Math,” a 2012 report from the Girl Scout Research Institute, 74% of the teenage girls are interested in STEM subjects.

To engage girls in curiosity, creativity and experimentation, and keep them actively engaged in STEM in their transitioning years, the Iota Sigma Pi (ISP) Chlorine Chapter at LSU organizes an MLK Day service project “Girls Do Chemistry!” About 120 girl scouts registered for the event in 2019. On January 19th, ISP, in conjunction with graduate student volunteers from the Chemistry Graduate Student Council and the Macromolecular Studies Group, shared their enthusiasm for chemistry with future scientists in Choppin Hall. Junior girl scouts performed chemical reactions (mostly metals reacting with acids) and made observations vis-à-vis color changes. Brownies mixed black food coloring and Epsom salts and learned some chromatographic skills, separating the components on filter paper. LSU students showed girls how much fun we can have with chemistry. Such activities help to break down the outdated stereotypes and feelings of insufficiency that hold girls back from pursuing careers in STEM fields. Early exposure to people who have careers in STEM can make all the difference.

[contributed by Weiwei Xie]
George Stanley Goes Out with a Bang

At a ceremony on March 13th, Cyril and Tuttle Vetter Alumni Professor George G. Stanley received the 2018 STEM Senior Scholar Award in the LSU Rainmakers series of research awards. In 2016, with Ranelka Fernando (LSU PhD ‘15), Ciera Gasery (LSU PhD ‘16) and Marshall Moulis (LSU PhD ‘17), he published a major review in Topics in Organometallic Chemistry titled, “Bimetallic homogeneous hydroformylation.” This was the holy grail that Dr Stanley pursued throughout his academic career. His place in the field was cemented by a 1993 Science paper and has led to numerous industrial collaborations and research support. Everyone who has attended an Inorganic Chemistry Gordon Research Conference knows George.

In recent work with Drew Hood (LSU PhD ‘19) and RJ Johnson (LSU PhD ‘19), George has ironically discovered a series mononuclear cationic cobalt (II) bisphosphine catalysts (e.g., see Figure) that are two orders of magnitude more active than the current industrial cobalt catalysts used for hydroformylation, HCo(CO)₅ and HCo(CO)₅(PR₃). Almost as active as the state-of-the-art rhodium catalysts, the cobalt complexes are 4,000 times less expensive on a molar basis. The catalysts are unusually robust, with extremely high turnover numbers. In a recent interview, Stanley said, “It’s nice to go out with this cobalt discovery as the pièce de résistance of my career. I don’t have any problems with the fact that I’ve spent my entire career trying to get two metals to work together and ended up with this incredible monometallic catalyst that is likely to have large-scale industrial applications.”

George grew up in eastern Pennsylvania, citing the proverbial chemistry set from his parents and a book called “Our Friend the Atom” as key elements on the way to becoming a scientist. He worked in his small-town pharmacy during high school, which allowed him to order chemicals to produce some of the best firecrackers in town. “Mainly, I made things that exploded.” We still see that boyish excitement when he detonates balloons of hydrogen and oxygen (the so-called stoichiometry experiment is really about blowing things up). As an undergraduate at the University of Rochester, he is unusually proud of his low GPA and his research with Rich Eisenberg. A PhD at Texas A&M with Al Cotton and a NATO & CNRS Postdoctoral Fellowship with John Osborn at the Université Louis Pasteur in Strasbourg followed. George began his independent academic career at Washington University in St Louis and moved to LSU in 1986. The rest, as they say, is history.

In the past couple of years, George has received recognitions of his other professional passions: a 2017 Tiger Athletic Foundation LSU President’s Award (extraordinary classroom teaching) and the 2018 LSU Outstanding Service-Learning Faculty Award (service-learning and outreach). He has been a tremendous contributor to the Department of Chemistry, giving generously of his time and energy in many spheres. George and his wife, Sally Hunter, have been the gracious hosts of many functions at their Bourbon Avenue home. George has also been an asset to the local community, serving as a stalwart of the ACS Baton Rouge Local Section, co-organizer of Super Science Saturday, and instigator and manager of the ChemDemo program that celebrated 20 years of bringing hands-on chemistry into K-12 schools in 2017. This summer, George is retiring from LSU. He and Sally are building a new home in Loveland, Colorado and looking forward to new adventures. We wish them the very best and thank them for their many contributions.

NEW PATENTS

Les Butler, Kyungmin Ham and Warren Johnson, have been awarded a patent for “High energy grating techniques” (US 10,117,629).

Kermit Murray, Suman Ghorai, and Chinthaka Seneviratne have received a patent for “Tip Enhanced Laser Assisted Sample Transfer for Biomolecule Mass Spectrometry” (WO 2016112171 A1).

Isiah Warner, Noureen Siraj, and Deepthi De Silva have been awarded a patent for “Carbazole-Based GUMBOs for Highly Efficient Blue OLEDs” (WO 2016112027 A1).

Robin McCarley, Dimitris Nikitopoulos, Sungook Park, Michael Murphy, Steven Soper and Doral Moldovan were awarded a patent for “Biomolecular Processing Platform and Uses” (EPO 2954103).
Magdalena Usategui was born and raised in Cuba, the youngest of three children; her father died when she was 12 years old. Young Magdalena was not enthusiastic about the tertiary education opportunities in her homeland and the traditional expectations of women at the time. After repeating her senior year of high school at the Ravenhill Academy (Germantown, PA) she attended Immaculata College where she did well but was disappointed by the lack of science classes. Friends of her family had sons in Chemical Engineering at LSU. While major east coast schools seemed reluctant to admit a woman to their chemistry or physics programs, Dean Choppin accepted her on the basis of her scholarly record.

Along with her close friend, Aurora Fernandez de Castro, she came to LSU where they lived in the French House, a dormitory for foreign women (now the Honors College). She recalls that the men in their classes largely ignored their female classmates. While some professors were supportive, others more than suggested that she should “go home where women belong.” She has good memories of her undergraduate days in Baton Rouge, receiving awards from the ACS and APS and graduating cum laude. Professor Philip West arranged a summer job for her at Continental Oil in Oklahoma and then she returned to LSU where she worked in West’s lab, completing an MS thesis on spot tests for phenols. She spent a summer at a Dupont research station, in Waynesboro, VA, where nylon and orlon were synthesized. She returned to LSU for doctoral studies and joined Professor Joel Selbin’s group wherein she studied the higher oxidation states of silver. She was the only woman in the graduate program at that time.

Following graduation, Dr Usategui returned to Dupont for a while, but her thirst for knowledge led her to the Case Institute of Technology (now Case Western) where she was an instructor in physics and began coursework in theoretical physics. A less than encouraging climate led her look for other opportunities. The groundbreaking work of Dr Helene Toolan, at the Sloan Kettering Institute for Cancer Research in New York City, was beginning to link viruses to cancer. Usategui ultimately worked with Toolan at a new cancer institute at the Putnam Memorial Hospital in Bennington, VT, for five years. She enjoyed the research but sought a move from basic science to applied research. A stint at the Ames Laboratory, in Elkhart, Indiana followed. In 1973 she interviewed for a job at Hoffman LaRoche where she ultimately stayed for 20 years. Of opportunities, Magdalena says, “if you don’t get what you want, it wasn’t for you.”

At Hoffman LaRoche, Dr Usategui worked on many projects and rose through the ranks to become the Director and Vice-President of Research and Development in the Diagnostics Division in 1984. She thrived on solving problems and had weekly discussions with her Swiss and German counterparts. Patents include immunoassays for tetrahydrocannabinoid metabolites, stabilized solutions of angiotensin I, and a rapid test for the detection of myocardial infarction. The challenge was often how to merge this technology with instrumentation to produce a key product. She encouraged and supported her people for promotions and was the industrial advisor for some of her colleagues who obtained PhD degrees from Rutgers University.

In 1993, Dr Usategui retired to become a consultant for Roche. She also served, for a time, as the Director of Research, Quality Control and Production for Spectral Diagnostics, based in Toronto. She retired again in 1998 to dedicate herself full time to animal rescue. She founded the “Francis of Assisi Society for Animals” that aims to find a home for all abandoned or feral cats in the Bennington area. In 2019, she remains the heart and soul of the organization, but has recently relinquished the position of Chairman of the Board. In retirement, she has also discovered a thirst for history, music and economics, and reads widely on these topics. Magdalena appreciates the opportunity that LSU gave a young lady from Cuba in the 1950s. Some 65 years after coming to the USA, she has made major contributions to science, diagnostics and animal welfare.

EARLIER WOMEN WHO RECEIVED A PhD IN CHEMISTRY FROM LSU

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Thesis Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucille Grace Boudreaux</td>
<td>1941</td>
<td>The Removal of Chlorides and Sulfates by Synthetic Resins (W. R. Edwards and M. C. Schwartz)</td>
</tr>
<tr>
<td>Virginia Rice Williams</td>
<td>1947</td>
<td>Lipide Stimulation by Lactobacilli (E. A. Fieger)</td>
</tr>
<tr>
<td>Sister Mary Veronica Drawe</td>
<td>1951</td>
<td>Chromatography with Aqueous and Polar Solvents (A. L. LeRosen)</td>
</tr>
<tr>
<td>Ada Lorine Ryland</td>
<td>1951</td>
<td>The Theory of Fractional Solvent Extraction and its Application to Cresol Separation (E. R. Compere)</td>
</tr>
</tbody>
</table>
Christian Boussert, 2019 Hall of Distinction Honoree

As the master scientific glassblower and manager of the College of Science Glassblowing Shop, Christian Boussert served the Department of Chemistry and College of Science for more than 32 years. His work perfectly shows the beauty of a combination of the art of glassblowing and science.

Boussert graduated from the prestigious Académies de Créteil-Paris-Versailles in France. Following his education in France, Christian came to the USA, as the Glassblower at Stony Brook University in New York. At Stony Brook, he met his wife Anne (LSU Chemistry, BS ’70). Following the completion of Anne’s MS degree in 1975, the couple moved to Louisiana, with Christian assuming the role of LSU Glassblower and Anne beginning a long career at Dow. Christian Boussert was the College and Department of Chemistry’s artist in residence in the Glass Shop in Choppin Hall. Upon his retirement in 2007, the University took the unusual step of naming him Master Glassblower Emeritus.

During his time at LSU, Boussert managed glassblowing facilities and worked with researchers to create unique hand-crafted pieces, designed to meet the needs of each experiment. These devices not only provide enhanced research results, but also doubled as pieces of the artwork. Paul Russo, Roy Paul Daniels Emeritus Professor, praised the cell washer Boussert made for his research project, by infiltrating the cleaning liquid into the upside-down tubes until they were completely dust-free. He raved so much that when Charles Han, one of the world’s leading polymer chemists, saw the washer, he wanted one of his own, and he wanted it made by Boussert.

Boussert’s work also contributed to the Soviet American Gallium solar neutrino Experiment’s (SAGE) Nobel Prize winning experiment. When the team needed counters that had little to no radioactivity to store germanium atoms, they looked to Boussert. He designed, engineered and crafted these counters, made of ultra-clean-low-radioactivity quartz, in his LSU glassblowing studio. Boussert has remained active in the glassblowing community in the US, and in Europe, where he has promoted his craft and represented LSU with distinction.

The Bousserts created a substantial endowment at LSU to support the Dr Benjamin Pierre Boussert Lecture Series in Chemistry to memorialize their late son. The lecture series invites famous scientists, often with special connections to Ben Boussert, to campus to share their research. Ben was an LSU University Medalist (LSU Chemistry & Chemical Engineering, BS ’99) who died in fiery automobile accident in 2005, as he approached completion of his PhD at UC Berkeley. The Bousserts also created the Benjamin P. Boussert Conference Room and sponsor the Benjamin P. Boussert Outstanding Scholar Award, to recognize senior undergraduates with potential reminiscent of Ben’s.

NEWS IN BRIEF

Director Emerita of LSU’s Center for Academic Success, Saundra McGuire, has been named the winner of the 2019 NISOD (National Institute for Staff and Organizational Development) Suanne Davis Roueche Distinguished Lecturer Award. Her award lecture was titled, “Metacognition: The Key to Equity and Excellence for All Students.”

Boyd Professor Isiah Warner was the recipient of a 2019 Nature Award for Mentoring in Science. LSU, in conjunction with Nature, hosted a reception on January 14th.

Assistant Professor Tuo Wang, along with postdoc Xue Kang and graduate students Alex Kirui and Malitha C. Dickwella Widanage, and collaborators, have published an article providing molecular level insights into the lignin-polysaccharide network of plant cell walls (Nature Communications 2019, 10, 347). This work has implications for post-harvest processing of crops, such as corn, for conversion to biofuels and biomaterials.

Professor Carol Taylor was appointed Interim Associate Dean for Research & Administration in the College of Science, effective February 15th, 2019. She hopes this will not delay her escape plans too much.

Neepa Kuruppu (PhD ’19, Gamo Group) was the recipient of a 2018 Tom W. Dutton Scholarship Award that recognizes female students for outstanding service to the university community. In September, she will commence as a TD Lithography Module Engineer at Intel Corporation in Hillsboro, OR.

Vickie Tate Thornton (Operations Manager) was the recipient of the 2019 Department of Chemistry Outstanding Staff Award.

Amy Xu (Auckland BS ’09, PhD ’16) will join the Department as an assistant professor in Fall 2020, following a faculty search for a scientist using neutron scattering to address biological problems. She will continue her postdoctoral appointment with Joseph Curtis at the National Institute of Standards and Technology (NIST) in Maryland in the year-to-come.
William Austin Pryor was the son of Adeline and Saul Arnold Pryor. He was born in St Louis, MO, and moved to Los Angeles, with his parents at the age of 5. The precocious Pryor went directly from junior high to the University of Chicago at the age of 15. He recalled the train journey from LA to Chicago, amidst World War II, during which a captain helped him gain insight into Macbeth, in preparation for his qualifying exams. He presumed that the 50-caliber machine gun in a sandbag at the entrance of the physics building was de rigueur for a physics department. He received a PhD (Philosophy, 1948) and a BS (Chemistry, 1951). As a graduate student at the University of California, Berkeley, he studied the acid-catalyzed aldol condensation with Professor Donald Noyce and received his PhD in 1954. He was a research chemist with the California Research Corporation (1954-60) and a lecturer at Berkeley (1955-60). In this dual role, he continued to teach and conduct research. From 1960-63, he was an assistant professor at Purdue University where he wrote a book on sulfur chemistry. In 1963 he relocated to LSU, was promoted to full professor in 1968, and elevated to the rank of Boyd Professor in 1972.

Professor Pryor was a pioneer in the chemistry of free radicals and applied his insights to biology and medicine. According to him, he chose this area so that he would not be “trampled over by every young bright assistant professor.” He remembers a letter from Frank Westheimer (his undergraduate mentor) explaining why free radicals could not exist in cells. Bill wrote the first textbook on free radicals and a 6-volume series on free radicals in biology. He ultimately became an expert in oxidative stress and the role of antioxidant vitamins in human health. He made the first discovery of free radicals in cigarette smoke in 1976. In an email to Mike Griffith (LSU PhD ’66, Pryor Group), Bill quipped, “Everyone at the checkout counter now knows all there is to know about free radicals.”

For 60 years, Pryor taught sophomore organic chemistry (at Berkeley, Purdue and LSU). A former student spoke of Bill’s “amazingly broad and creative thinking” and “dogged determined approach to science” in the same sentence. Former graduate student, Ken Kneipp (LSU PhD ’71, Pryor Group) recalls great camaraderie in the Pryor Lab that extended onto the tennis court.

Bill Pryor was a tremendously successful scientist. He published more than 800 articles and more than 30 books. Over his career, he competed for more than $60 million in research funding. He received numerous awards, including one of the first MERIT awards from the NIH, the ACS Gustavus John Esselen Award for Chemistry in the Public Interest (2000) and the Lifetime Achievement Award of the Oxygen Society (2002). He was the founding editor of Free Radical Biology & Medicine. He was proud of the fact that he worked with five Nobel Prize Winners: Linus Pauling, Melvin Calvin, Albert Szent-Gyorgi, William Libby and Louis Ignarro.

In his spare time, Bill enjoyed biking, hiking, and 20th century history. He was also a jazz music aficionado. His mother was a classical pianist and started teaching her son when he was 7. He “fell under the spell of jazz” at the age of 10 when a grammar school friend introduced him to Fats Waller’s 1939 “Your Feets Too Big.” He was the President of the University of Chicago Jazz Club. Until recently he hosted “Classic Jazz” on WBRH in Baton Rouge. The other great love of Bill’s life was his wife, Gail, who preceded him in death by nearly one year. Together they made many contributions to LSU and the Department of Chemistry, including eponymous conference rooms in Choppin Hall, scholarships, and a substantial contribution to the William A. Pryor Chair in Chemistry, a fund initiated by a former student. Professor Pryor passed away on March 13th; a memorial service was held at St Albans on April 13th. Anyone, who would like to pay tribute to Bill, is invited to make a donation to this account through the LSU Foundation.
Kumar Awarded NSF CAREER Grant

Assistant Professor Revati Kumar was named a 2019 awardee of the NSF CAREER Program. Through the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) program of the Chemistry Division, she will receive $550,710 over a period of five years, as announced in New Research Grants, acknowledging her national standing and potential as a scientific leader.

Dr Kumar is a theoretical and computational chemist. She earned her BSc and a MSc from Bangalore University in India. She completed her PhD at the University of Wisconsin at Madison under the direction of Professor James L. Skinner. Three postdoctoral experiences ensued: with Professor Kenneth Jordan (University of Pittsburgh), Professor Thomas Keyes (Boston University) and Professor Gregory Voth (University of Chicago). Revati joined the Department of Chemistry at Louisiana State University in August 2013. A key aspect of her research is the development of computational models to study systems, such as graphene oxide, at relevant length and time scales.

Graphene oxide (GO) absorbs other molecules and ions and has potential application in water purification and technologies associated with batteries, fuel cells and catalysts. The surface of the GO can be "tuned," in terms of the oxygen atoms attached to the sheet, modulating reactivity. Dr Kumar and her research group members will develop computer models to simulate the properties and behavior of GOs and their interaction with assorted liquids, including water (see Figure).

The educational component of her NSF CAREER proposal builds upon her development of molecular simulation modules in undergraduate physical chemistry courses. She has a longstanding collaboration with Professor Anne Milet (Université Grenoble Alpes) with whom she has targeted graduate students and postdoctoral researchers to educate them in state-of-the-art computational methods. Growing out of her involvement with the Chlorine Chapter of Iota Sigma Pi, “Fun Molecules" is a series of presentations and hands-on learning activities for students in middle schools and high schools.

A team player, and a valued colleague across the Department, Dr Kumar has collaborations that range from working with other computational experts, through surface scientists and spectroscopists, to those developing new reactions in organic chemistry.

Traynham Delivers Lecture on Mary Good at SWRM

At the age of 93, Professor Traynham was invited to present a talk in the HIST Division at the 74th Southwest Regional Meeting of the ACS in November 2018. Given the location of the meeting — Little, Rock, AR — it didn’t take him long to decide on the title of “Mary L. Good: Career Insights Via an Oral History Interview" given that it was the 20th anniversary of his conducting the interview in Little Rock. Around the turn of the century, he conducted a series of such interviews for the Chemical Heritage Foundation.

Mary L. Good received her PhD from the University of Arkansas and went on an illustrious career in academia (LSU and UNO) and industry (Allied Signal). She also held government appointments under Carter, Reagan, Bush Sr and Clinton. She was President of the ACS in 1987 and was inducted into the LSU COS Hall of Distinction in 2006. Here are some quotes from the original interview transcript that relate to her time in our Department (1954-58):

Doc Chop[p]in ... ran the department as an autocrat. He might tolerate faculty participation a little, but he didn’t pay much attention to it. He always tested people to see whether they could make it or not.

So we were upstairs [doing sulfur chemistry] and [Professor West] was downstairs and his students had their detectors out the window trying to pick up pollutants because he was one of the very early people looking at environmental chemicals ... seeing what they could do with gas chromatography.

It was the period right after the Cuban problem, and we actually got from Cuba some very good students ... I followed the careers of two of the female Cuban students for a very long time. I don’t know where they are today, but every once in a while I run into one or the other of them. Both of them now work for the industry (see story on p. 3).

It was a very good learning experience for management. Here you had a young, twenty-three-year-old instructor, who was director of the radiochemistry laboratory, telling a full professor that he could not do what he was doing.
Graduate Student Accomplishments

LSU GSSPC, Spring ACS Meeting

In Fall 2017, a group of LSU Chemistry graduate students won a nationwide competition to serve as the Graduate Student Symposium Planning Committee (GSSPC) for Spring 2019. They organized and hosted a symposium titled, “Artificial Molecular Machines and the Next Generation of Molecular Control” on April 2nd at the 257th ACS Meeting in Orlando, FL. The symposium featured eight internationally renowned speakers and was well attended. A new GSSPC initiative involved 15 travel awards for undergraduates. Assistant Professor Semin Lee conducted a workshop on the fundamentals of molecular machines so that the students were primed for the symposium.

2019 NSF Graduate Fellowships – Honorable Mentions

Graduate students, Amanda Owen (left, McCarley Group) and Callie Stern (right, Elgrishi Group) received honorable mentions.

2019 Graduate Student Awards

- Mary Jo Pribble Award in Inorganic Chemistry
 Drew Hood (Stanley Group)
- H. DuPont Durst Award in Organic Chemistry
 Joshua Lutz (Taylor Group)
- Robinson Analytical Chemistry Award 2018
 Kelin Wang (Murray Group)
- Robinson Analytical Chemistry Award 2019
 Neepa Kuruppu (Garno Group)
- Neil Kestner Physical Chemistry Award
 Pu Du (Kumar Group)
- Timothy S. Evenson Macromolecular Award
 Garrett Sternhagen (Zhang Group)
- Dow Chemical Macromolecular Award
 Bruno Jakobi (Schneider Group)
- Kiran Allam International Award
 Fatemah Khamespanah (Maverick Group)
- James G. Trayham Teaching & Research Award
 Neepa Kuruppu (Garno Group)
- TA Scholars: Kathryn McKee (1212), Autumn Webb (1212), Emmanuel Ampiah (2002), Dennel McKenzie (2364), Jeramie Rushing (3493) and Prakash Hamal (1212 / 4553)
- Special TA Recognitions: Saeed Fosshat, Gerard Ducharme and Maodie Wang

2019 Philip West Lectureship in Analytical Chemistry

Students of the Analytical Division organized the event and hosted Professor Bill Heineman, Distinguished Professor at the University of Cincinnati, on January 17-18th.

Left to right: Emmanuel Ampiah, Doug Gilman, Chris Sumner, Bill Heineman, Shaniqua Hayes, Justin Grennell and Neepa Kuruppu.

Quick Cure Clay

In a great example of basic science evolving into a commercial product, Quick Cure Clay is being marketed by Ranger Industries, a well-established leader in the arts and crafts industry. According to their website, “QuickCure Clay is a pliable clay formula that cures in minutes with just the use of a heat tool, there’s no need for a kiln or oven ... the finished product is very strong and durable, great for making sculptures, jewelry, and other mixed media projects.” Pojman is an expert in frontal polymerization and the clay is a “cure on demand” application of the phenomenon. Pojman serves as the President and 3PCEO of Pojman Polymer Products, LLC.

New Research Grants

Associate Professor Justin Ragains has received funding, via the R15 mechanism, from NIH’s NIAID for his project titled, “Synthesis of Lipopoligosaccharide-Capsular Polysaccharide Conjugates for the Prevention and Treatment of Infections Caused by Acinetobacter baumannii.” This bacterial pathogen is an “on-the-rise” cause of hospital-related and combat-related infections that frequently have a high mortality rate.

Assistant Professor Revati Kumar has received an NSF CAREER Award for her proposal “Exploring Chemistry at Graphene Oxide Liquid Interfaces.” (see article on p. 6)

Professor David Spivak has received funding, as a subcontractor to Seacoast Science, Inc. (Carlsbad, CA), in Phase I of their project, “Contaminate Detection Using Large Area Molecularly Imprinted Chemiresistors,” funded by the NIH’s Small Business Technology Transfer (STTR) mechanism.

A team led by Professor Mario Rivera collated a proposal, “Enhancing the Capabilities of the Shared Laboratory for Macro- and Bio-Macromolecular Research.” Co-investigators included the following Chemistry faculty: Donghui Zhang, Gerald Schneider, and Daniel Kuroda. This Comprehensive Enhancement grant from the LA Board of Regents will see the purchase and implementation of several new items of equipment, over the next five years to enable the study of large molecules.

Assistant Professor Noémie Elgrishi has received funding from the LA Board of Regents’ Research Competitiveness Subprogram (RCS) for her project titled, “Catalytic Reduction of Hexavalent Chromium to Reclaim Contaminated Water Sources.”

Assistant Professor Matthew Chambers has received funding from the LA BOR RCS program for his project titled, “Developing Molecular Photoelectrodes for Renewable Energy Storage and Catalysis.”