Neutron scattering presentation series

(1) Basic concepts and neutron diffraction

Xin Li
Department of Chemistry
Louisiana State University
June 1st, 2015
<table>
<thead>
<tr>
<th>Type</th>
<th>Technique</th>
<th>Length scale</th>
<th>Time scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reciprocal space (Q/Å⁻¹)</td>
<td>Real space (r/nm)</td>
</tr>
<tr>
<td>Static scattering</td>
<td>Ultra-Small Angle Neutron Scattering (USANS)</td>
<td>5x10⁻⁶ ~ 0.005</td>
<td>100 ~ 10⁵</td>
</tr>
<tr>
<td></td>
<td>Small Angle Neutron Scattering (SANS)</td>
<td>0.001 ~ 0.5</td>
<td>1 ~ 500</td>
</tr>
<tr>
<td></td>
<td>Neutron Diffraction</td>
<td>0.1 ~ 20</td>
<td>0.05 ~ 5</td>
</tr>
<tr>
<td></td>
<td>Neutron Reflectometry</td>
<td>0.001 ~ 0.5</td>
<td>1 ~ 500</td>
</tr>
<tr>
<td>Dynamic scattering</td>
<td>Neutron Spin Echo (NSE)</td>
<td>0.01 ~ 0.5</td>
<td>1 ~ 50</td>
</tr>
<tr>
<td></td>
<td>Quasi-Elastic Neutron Scattering (QENS)</td>
<td>0.1 ~ 10</td>
<td>0.05 ~ 5</td>
</tr>
<tr>
<td></td>
<td>Inelastic Neutron Scattering (INS)</td>
<td>0.1 ~ 10</td>
<td>0.05 ~ 5</td>
</tr>
<tr>
<td>(\lambda = 0.1 \sim 10 \text{ Å})</td>
<td>Source</td>
<td>Measurement time</td>
<td>Sample size</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Neutron</td>
<td>Reactor Spallation source</td>
<td>min \sim,\text{hour}</td>
<td>cm, mL</td>
</tr>
<tr>
<td>X-ray</td>
<td>Synchrotron</td>
<td>(\mu s \sim \text{ms})</td>
<td>mm, (\mu\text{L})</td>
</tr>
<tr>
<td></td>
<td>In-house</td>
<td>min \sim,\text{hour}</td>
<td></td>
</tr>
</tbody>
</table>
Advantages and Disadvantages of Scattering Techniques

Advantages:
1. Dynamical and structural information in several orders
2. Ensemble sampling
3. Non-destructive penetration
4. Contrast variation available
5. Sensitive to magnetic fields (neutron)

Disadvantages:
1. Inverse problem
2. Ensemble sampling
3. Radiation resistance (X-ray)
4. Sample amount
5. Beamtime accessibility (neutron)
Outline

Basic concepts:
1. Scattering cross section
2. Scattering length and scattering length density
3. Coherent and incoherent scattering
4. Reciprocal space
5. Spatial and time correlation functions

Neutron diffraction:
1. Single crystal diffraction
2. Powder diffraction
3. Rietveld refinement method
4. Pair distribution function (PDF) method
Cross Section – Scattering Ability

Number of incident neutrons: \(I \)
Number of scattered neutrons: \(\Theta \)
Number density of scatterers in the sample: \(N \ [L^{-3}] \)
Beam size: \(A \ [L^2] \)
Sample thickness: \(\Delta x \ [L] \)
Solid angle: \(\Omega \)

Scattering probability:

\[
\frac{\Theta}{I} \propto \frac{NA\Delta x}{A} = N\Delta x
\]

\[
\frac{\Theta}{I} = N\Delta x \sigma \quad \frac{1}{I} \frac{d\Theta}{d\Omega} = \frac{N\Delta x d\sigma/d\Omega}{\Omega} = N\Delta x \sigma(\theta)
\]
Cross Section and Scattering Length

\[\frac{\Theta}{I} = N\Delta x \sigma \quad \frac{1}{I} \frac{d\Theta}{d\Omega} = N\Delta x \frac{d\sigma}{d\Omega} = N\Delta x \sigma(\theta) \]

\(\sigma [L^2] \) (microscopic cross section): describes the scattering ability of the material.

For neutrons scattered by the nuclei:

\[\sigma(\theta) = \frac{d\sigma}{d\Omega} = b L^2 \]

\(b [L] \): constant, scattering length

\[\sigma = \int \sigma(\theta) d\Omega = 4\pi b L^2 \]

Units: \(\sigma \): 1 barn = 10^{-24} \text{ cm}^2 = 10^{-28} \text{ m}^2

\(b \): 1 fm = 10^{-15} \text{ m} = 10^{-5} \text{ Å} \)
1. X-ray sensitive to heavy atoms (high electron density)
2. Neutrons sensitive to light nuclei
3. Hydrogen: negative neutron scattering length (isotope substitution)
4. Chlorine and sulfur in the solvent strongly scatter X-ray
5. Boron: neutron absorption
Example 1: scattering by 1mm thick water

Mass density: 0.99997 g/cm3

Cross section: H: 82.02 barn, O: 4.232 barn

\[
T\downarrow n = 1 - \frac{\Theta}{I} = 1 - N \Delta \sigma H \Delta x H = 1 - N \Delta \sigma H \Delta x (2\sigma H + \sigma O) = 1 - \frac{0.99997}{18.01528 \times 6.0221413 \times 10^{23}} \times 0.1 \times (2 \times 82.02 + 4.232) \times 10^{-24} = 0.4375
\]
Contrast comes from the scattering length density.

\[\rho = \frac{1}{V} \sum_i b_i \]

Unit: 10^{-10} cm$^{-2}$ = 10^{-6} Å$^{-2}$

Scattering Length Density

(Pynn IUB lecture 2006)
Example 2: scattering length density of water

Mass density: 0.99997 g/cm3
Scattering length: H: -3.7423 fm, O: 5.805 fm

\[
\rho_H O = \text{mass density/molecular weight } N A \sum_i b_i = \text{mass density/molecular weight } N A (2 b_H + b_O) = 0.99997/18.01528 \times 6.0221413 \times 10^{23} \times 1/10^{24} \times (-2 \times 3.7423 + 5.805) \times 10^{-5} = -0.5614 \times 10^{-6}
\]

(Å^{-2})
Scattering Length Density (cont’d)

<table>
<thead>
<tr>
<th>materials</th>
<th>SLD (10^{-6} Å$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>-0.56</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>6.39</td>
</tr>
<tr>
<td>h-styrene</td>
<td>1.413</td>
</tr>
<tr>
<td>d-styrene</td>
<td>6.5</td>
</tr>
<tr>
<td>h-cyclohexane</td>
<td>-0.24</td>
</tr>
<tr>
<td>d-cyclohexane</td>
<td>6.01</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>4.186</td>
</tr>
</tbody>
</table>

The graph shows the scattering length density (10^{10} cm$^{-2}$) as a function of %D$_2$O. The materials are color-coded as follows:
- **Water**: Blue
- **Lipid**: Green
- **Protein**: Pink
- **DNA**: Cyan

(Pynn IUB lecture 2006)
Scattering Length Density Profile

\[\rho \text{ [Å}^2\text{]} \]

Depth (y) into the sample [Å]

\(\Delta = 20 \text{ nm} \)

Fitzsimmons lecture 2005)

Coherent and Incoherent Scattering

The neutron scattering length depends on the nuclear isotope, spin relative to the neutron, and nuclear eigenstate.

For a single nucleus of a species,

\[b_{\downarrow i} = \langle b \rangle + \delta b_{\downarrow i} \]

where \(\langle \delta b_{\downarrow i} \rangle = 0 \)

For the correlation between two nuclei,

\[b_{\downarrow i} b_{\downarrow j} = \langle b \rangle^2 + (\delta b_{\downarrow i} + \delta b_{\downarrow j})\langle b \rangle + \delta b_{\downarrow i}\delta b_{\downarrow j} \]

Average over the whole group of nuclei,

\[\langle \delta b_{\downarrow i} + \delta b_{\downarrow j} \rangle = 0 \]

\[\langle \delta b_{\downarrow i}\delta b_{\downarrow j} \rangle = 0 \& (i \neq j) \& ((\delta b_{\downarrow i}) \tau_2) = (b \tau_2) - (b \tau_2 \& (i=j)) \]
For the correlation between two nuclei,

\[b_{ij} b_{lj} = \langle b \rangle^2 + \delta b_{ij} \delta b_{lj} \]

Therefore, the correlation between all nuclei,

\[\frac{d\sigma}{d\Omega} = \sum_{i,j=1}^{N} b_{ij} e^{iQ \cdot (R_i - R_j)} = \langle b \rangle^2 \sum_{i,j=1}^{N} b_{ij} e^{iQ \cdot (R_i - R_j)} + N(\langle b^2 \rangle - \langle b \rangle^2) \]
Coherent and Incoherent Scattering (cont’d)

\[
\frac{d\sigma}{d\Omega} = \langle b \rangle^2 \sum_{ij=1}^N b_i b_j e^{-iQ \cdot (R \downarrow_i - R \downarrow_j)} + N((b \downarrow^2) - \langle b \rangle^2
\]

- **Coherent scattering**: Correlation between relative spatial positions
- **Incoherent scattering**: Individual scattering contribution
Coherent and Incoherent Scattering (cont’d)

\[\langle b \rangle^2 \]

Coherent scattering cross section

Incoherent scattering cross section

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>(b_{\text{coh}}) (fm)</th>
<th>(\sigma_{\text{coh}}) (barn)</th>
<th>(\sigma_{\text{inc}}) (barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-3.472</td>
<td>1.8</td>
<td>80.2</td>
</tr>
<tr>
<td>D</td>
<td>6.674</td>
<td>5.6</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>6.65</td>
<td>5.55</td>
<td>0.001</td>
</tr>
<tr>
<td>O</td>
<td>5.805</td>
<td>4.2</td>
<td>0.0008</td>
</tr>
<tr>
<td>V</td>
<td>-0.443</td>
<td>0.02</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph showing scattering cross sections]
Reciprocal Space – Spatial Frequency

(a) 1D
(b) 2D
(c) 3D

Real lattice

Reciprocal lattice

Real lattice

Reciprocal lattice

Signal amplitude

Time domain

Frequency domain
Reciprocal Space – Spatial Frequency (cont’d)

Time space shape: $f(t)$

Frequency space shape: $F(\omega)$

$\mathcal{F}[f(t)] = F(\omega)$

$\mathcal{F}^{-1}[F(\omega)] = f(t)$

$\omega T = 2\pi$

Fourier transform:

$\mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt = F(\omega)$

$\mathcal{F}[f(r)] = \int V f(r) e^{-i\cdot Q \cdot r} \, dV = F(Q)$
Reciprocal Space – Spatial Frequency (cont’d)

Time space shape:

Frequency space spectrum:

\[\mathcal{F}[f(t)] = F(\omega) \]

\[\mathcal{F}^{-1}[F(\omega)] = f(t) \]

\[\omega T = 2\pi \]

Real space distribution:

Reciprocal space spectrum:

\[\mathcal{F}[f(r)] = F(Q) \]

\[\mathcal{F}^{-1}[F(Q)] = f(r) \]

\[Qd = 2\pi \]
Reciprocal Space – Spatial Frequency (cont’d)

\[2d \sin \theta = n \lambda \]
Reciprocal Space – Spatial Frequency (cont’d)
Neutron/X-ray/light scattering measures different mathematical transforms (Fourier, Abel) of two-point correlation functions (Debye, van Hove) in different spaces \((r/Q, t/\omega)\) and different time or length scales \((\lambda, 2\theta)\).
Correlation Functions (cont’d)

Interference between two scattered waves:
\[
\Psi_{\downarrow i} \Psi_{\downarrow j} \star = b_{\downarrow i} b_{\downarrow j} e^{\star -iQ \cdot (R_{\downarrow i} - R_{\downarrow j})}
\]

Sum over all scatterers:
\[
d\sigma/d\Omega = \sum_{i,j=1}^{N} b_{\downarrow i} b_{\downarrow j} e^{\star -iQ \cdot (R_{\downarrow i} - R_{\downarrow j})}
\]
Correlation Functions (cont’d)

\[
d\sigma/d\Omega = \sum_{i,j=1}^{N} b_i \Psi_j \Psi_j^* = \sum_{i,j=1}^{N} b_i b_j e^{-iQ \cdot (R_i - R_j)}
\]

Debye correlation function (structure)

\[\gamma(r) = \int V \rho(r') \rho(r + r') d^3 r'\]

van Hove pair correlation function (dynamic)

\[G(r,t) = \frac{1}{N} \sum_{i,j=1}^{N} \delta(r - r_i(t) + r_j(0))\]

Pair distribution function (structure)

\[g(r) = \frac{V}{N^2} \sum_{i,j=1}^{N} \delta(r - r_i + r_j)\]

Self time correlation function (dynamic)

\[G_s(r,t) = \frac{1}{N} \sum_{i=1}^{N} \delta(r_i(0)) \delta(r - r_i(t))\]
Correlation Functions (cont’d)

Debye correlation function (structure)

\[\gamma(r) = \int V \rho(r') \rho(r + r') \, dr' \]

\[I(Q) = \mathcal{F} [\gamma(r)] \quad \text{(SANS, USANS, ND, NR)} \]

\[G(z) = \mathcal{A} [\gamma(r)] \quad \text{(SESANS)} \]

Pair distribution function (structure)

\[g(r) = V/N \sum_{i,j} \delta(r - r_{ij}) \]

\[S(Q) = \mathcal{F} [g(r)] \quad \text{(SANS, USANS)} \]

van Hove pair correlation function (dynamic)

\[G(r,t) = 1/N \sum_{i,j} \delta(r - r_{ij}(t) + r_{ij}(0)) \]

\[I(Q,t) = \mathcal{F} \downarrow Q [G(r,t)] \quad \text{(NSE)} \]

\[S(Q,\omega) = \mathcal{F} \downarrow Q,\omega [G(r,t)] \quad \text{(INS)} \]

Self time correlation function (dynamic)

\[G_{\text{s}}(r,t) = 1/N \sum_{i,j} \delta(r_{ij}(0)) \delta(r - r_{ij}(t)) \]

\[S_{\text{s}}(Q,\omega) = \mathcal{F} \downarrow Q,\omega [G_{\text{s}}(r,t)] \quad \text{(QENS, incoh)} \]
Neutron Diffraction

\[|k \downarrow f| = |k \downarrow i| = \frac{2\pi}{\lambda} \]

\[Q \downarrow d = 2n\pi \]

\[Q : \text{Momentum transfer} \]

\[Q = k \downarrow f - k \downarrow i \]

\[n\lambda = 2d \sin \theta \]

Bragg's Law

Constructive interference when

\[d \sin \theta = \frac{n\lambda}{2} \]

Scattering triangle

\[Q = |Q| = 2|k \downarrow i| \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]
Neutron Diffraction (cont’d)

Two axis diffractometer

Diffraction – Where the atoms are:
Clifford Shull, 1994 Nobel Prize (1/2)
Notations

- **Crystal lattice**
 \[R = m_1 \mathbf{a}_1 \downarrow + m_2 \mathbf{a}_2 \downarrow + m_3 \mathbf{a}_3 \downarrow \]

- **Reciprocal lattice**
 \[G \downarrow hkl = h \mathbf{a}_1 \uparrow^* + k \mathbf{a}_2 \uparrow^* + l \mathbf{a}_3 \uparrow^* \]

- **Miller indices**
 \[h, k, l \]

- **(hkl)**: a set of planes perpendicular to \(G \downarrow hkl \), separated by \(2\pi / |G \downarrow hkl| \)

- **[hkl]**: a specific crystallographic direction

- **{hkl]**: a set of symmetry-related lattice planes

- **⟨hkl⟩**: a set of symmetry-equivalent crystallographic directions

\[a \downarrow 1 \uparrow^* = 2\pi / V \quad a \downarrow 2 \times a \downarrow 3 \]

\[a \downarrow 2 \uparrow^* = 2\pi / V \quad a \downarrow 3 \times a \downarrow 1 \]

\[a \downarrow 1 \times a \downarrow 3 = 2\pi \delta \downarrow ij \]

\[V = a \downarrow 2 \times (a \downarrow 2 \times a \downarrow 3) \]
Ewald Sphere

Laue’s condition

\[Q = G \downarrow hkl \]

\[Q \cdot a_1 = 2\pi h, \quad Q \cdot a_2 = 2\pi k, \quad Q \cdot a_3 = 2\pi l \]
Powder Diffraction

- Phase identification
- Crystallinity
- Lattice parameters
- Crystallite size
- Orientation
Rietveld Refinement Method

\[I = I_0 \sum h^{\uparrow} k^{\downarrow} m^{\downarrow} L^{\downarrow} F_{\downarrow h^{\downarrow} k^{\downarrow} l^{\downarrow}} P(\Delta h^{\downarrow}) + I^{\downarrow b} \]

- \(I_0 \): incident intensity
- \(k^{\downarrow h} \): scale factor for particular phase
- \(m^{\downarrow h} \): reflection multiplicity
- \(L^{\downarrow h} \): correction factors on intensity (texture...)
- \(F_{\downarrow h^{\downarrow} k^{\downarrow} l^{\downarrow}} \): structure factor for a particular reflection
 \[F_{hkl} = \sum i^{\uparrow} b_{il} e^{\uparrow - iQ \cdot R \downarrow l} e^{\uparrow - W \downarrow l} \]
- \(P(\Delta h^{\downarrow}) \): peak shape function (instrument resolution function, crystallite size, strain, defects)
- \(I^{\downarrow b} \): background intensity
Example: Polymer Diffraction

- Phase identification
- Crystallinity
 \[x_{cr} = A_{cr} / A_{cr} + K A_{am} \]
- Lattice parameters
 \[d = 2\pi/Q \]
- Crystallite size
 \[L_{hkl} = 0.89\lambda / (FWHM - \Delta\theta)\cos\theta \]
- Orientation
 \[f_{\phi} = 1/2 (3(\cos^2\phi) - 1) \]
Crystal Structure and Hydrogen Bonding System in Cellulose I\textsubscript{a} from Synchrotron X-ray and Neutron Fiber Diffraction

Yoshiharu Nishiyama,† Junji Sugiyama,† Henri Chanzy,§ and Paul Langan*∥

Contribution from the Department of Biomaterial Sciences, Graduate School of Agriculture and Life Science, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan, Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan, Centre de Recherches sur les Macromolécules Végétales, CNRS, affiliated with the Joseph Fourier University of Grenoble, BP 53, 38041 Grenoble Cedex 9, France, and Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received July 3, 2003; E-mail: langan_paul@lanl.gov

Example: Polymer Diffraction (cont’d)