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INTRODUCTION 

o Status of on-line optimization 

o Theoretical evaluation of distribution functions used in NLP’s 

o Numerical results support the theoretical evaluation 

o An optimal procedure for on-line optimization 

o Application to a Monsanto contact process 

o Interactive Windows program incorporating these methods 

Mineral Processing Research Institute 
web site 

www.leeric.lsu.edu/mpri/ 
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On-Line Optimization 

Automatically adjust operating conditions 
with the plant’s distributed control system 

Maintains operations at optimal set points 

Requires the solution of three NLP’s 
gross error detection and data reconciliation 
parameter estimation 
economic optimization 

BENEFITS 

Improves plant profit by 3-5% 

Waste generation and energy use are reduced 

Increased understanding of plant operations 
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 Some Companies Using On-Line Optimization 

United States 
Texaco 

Europe 
OMV Deutschland 

Amoco Dow Benelux 
Conoco Shell 
Lyondel 
Sunoco 

OEMV 
Penex 

Phillips 
Marathon 
Chevron 

Borealis AB 
DSM-Hydrocarbons 

Pyrotec/KTI 
NOVA Chemicals (Canada) 
British Petroleum 

Applications 
mainly crude units in refineries and ethylene plants 
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Companies Providing On-Line Optimization 

Aspen Technology - RT-OPT 
- DMC Corporation 
- Setpoint 

Simulation Science - ROM 
- Shell - Romeo 

Profimatics - On-Opt 
- Honeywell 

Litwin Process Automation - FACS 

Hyprotech Ltd. 

DOT Products, Inc. - NOVA 
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Key Elements 

Gross Error Detection 

Data Reconciliation 

Parameter Estimation

 Economic Model 
(Profit Function)

 Plant Model
 (Process Simulation) 

Optimization Algorithm 
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DATA RECONCILIATION 

Adjust process data to satisfy material and energy balances. 

Measurement error - e 

e = y - x 

y = measured process variables 
x = true values of the measured variables 

x~  = y + a 

a - measurement adjustment 
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DATA RECONCILIATION 

measurements having only random errors - least squares 

TEE-1Minimize: e e = (y - x)TEE-1(y - x) 
x 

Subject to: f(x) = 0 

EE = variance matrix = {F2ij}. 

Fi =standard deviation of ei. 

f(x) - process model
 - linear or nonlinear 
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DATA RECONCILIATION 

Linear Constraint Equations - only material balances 

f(x) = Ax = 0 

~analytical solution - x = y - EEAT(AEEAT)-1Ay 

Nonlinear Constraint Equations 

f(x) includes material and energy balances, chemical reaction 
rate equations, thermodynamic relations 

nonlinear programming problem 

GAMS and a solver, e.g. MINOS 
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Gross Error Detection Methods 

Time series
 screening 

Plant Data Set - 3 

3240 
3260 
3280 
3300 
3320 
3340 
3360 
3380 
3400 
3420 

1 3 5 7 9 11 13 15 17 19 

Plant Data 

Average 

Avg + Stddev 

Avg - Stddev 

Statistical testing 

o many methods 

o can include data reconciliation 
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Combined Gross Error Detection and Data Reconciliation 

Measurement Test Method - least squares 

Minimize: (y - x)TE-1(y - x) TEE-1= e e 
x, z 

Subject to: f(x, z, 22) = 0 
UxL # x # x
UzL # z # z

Test statistic: 
if *ei */Fi > C measurement contains a gross error 

Least squares is based on only random errors being present 

Gross errors cause numerical difficulties 

Need methods that are not sensitive to gross errors 
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Methods Insensitive to Gross Errors 

Tjao-Biegler’s Contaminated Gaussian Distribution 

P(yi * xi) = (1-0)P(yi * xi, R) + 0 P(yi * xi, G) 

P(yi * xi, R) = probability distribution function for the random error 

P(yi * xi, G) = probability distribution function for the gross error. 

Gross error occur with probability 0 

Gross Error Distribution Function 
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Tjao-Biegler Method 
Maximizing this distribution function of measurement errors or minimizing the 

negative logarithm subject to the constraints in plant model, i.e., 

Minimize:
 x 

Subject to: f(x) = 0 plant model 

xL # x # xU bounds on the process variables 

A NLP, and values are needed for 0 and b 

Test for Gross Errors 
If 0P(yi *xi, G) $ (1-0)P(yi *xi, R), gross error 

probability of a probability of a 
gross error random error 
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Robust Function Methods 

Minimize: -3 [ D(yi, xi) ] 
x  i 

Subject to: f(x) = 0 
UxL # x # x

Lorentzian distribution 

Fair function 

c is a tuning parameter 

Test statistic 

,i = (yi - xi )/Fi 
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Parameter Estimation - Error-in-Variables 

Least squares 

TEE-1Minimize: (y - x)TEE-1(y - x) = e e 
22 

Subject to: f(x, 22) = 0 22 - plant parameters 

Simultaneous data reconciliation and parameter estimation 

TEE-1Minimize: (y - x)TEE-1(y - x) = e e
 x, 22 

Subject to: f(x, 22) = 0 

another nonlinear programming problem 
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Three Similar Optimization Problems 

Optimize: Objective function 
Subject to: Constraints are the plant model 

Objective function 

data reconciliation - distribution function 
parameter estimation - least squares 
economic optimization - profit function 

Constraint equations 

material and energy balances 
chemical reaction rate equations 
thermodynamic equilibrium relations 
capacities of process units 
demand for product 
availability of raw materials 
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Theoretical Evaluation of Algorithms for 
Data Reconciliation 

Determine sensitivity of distribution functions to 
gross errors 

Objective function is the product or sum of 
distribution functions for individual 
measurement errors 

P = ( p(,) %% 3 ln p(,) %% 3D(,) 
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Three important concepts
 in the theoretical evaluation 
of the robustness and precision 

of an estimator from a distribution function 

Influence Function 
Robustness of an estimator is unbiasedness 
(insensitivity) to the presence of gross errors in 
measurements.  The sensitivity of an estimator to 
the presence of gross errors can be measured by 
the influence function of the distribution function. 
For M-estimate, the influence function is defined as 
a function that is proportional to the derivative of a 
distribution function with respect to the measured 
variable, (MD/Mx) 
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Relative Efficiency 
The precision of an estimator from a distribution is 
measured by the relative efficiency of the distribution. 
The estimator is precise if the variation (dispersion) of 
its distribution function is small 

Breakdown Point 
The break-down point can be thought of as giving the 
limiting fraction of gross errors that can be in a sample 
of data and a valid estimation of the estimator is still 
obtained using this data.  For repeated samples, the 
break-down point is the fraction of gross errors in the 
data that can be tolerated and the estimator gives a  
meaningful value. 
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Influence Function 
proportional to the derivative of the distribution function, IF % MD/Mx 

represents the sensitivity of reconciled data to the presence of gross errors 

Normal Distribution 

Contaminated Gaussian Distribution 

Lorentzian Distribution 

Fair Function 

Comparison of Influence Functions 
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Effect of Gross Errors on Reconciled Data - Least to Most 

IF
 

2 

1.5 

1 

0.5 

0 
0 2 4 6 8 10 12 14 

Error 

Lorentzian <  Contaminated Gaussian <  Fair <  Normal 
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Plant Model 
43 measured variables 
732 unmeasured variables 
761 linear and nonlinear constraints 
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Numerical Evaluation of Algorithms 

Simulated plant data is constructed by 

y = x + e + a **
 

y - simulated measurement vector for measured variables 

x - true values (plant design data) for measured variables 

e - random errors added to the true values 

a - magnitude of a gross error added to one of measured 
variables 

** - a vector with one in one element corresponding to themeasured variable with gross error and zero in other elements 
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Criteria for Numerical Evaluation 

Gross error detection rate - ratio of number of gross 
errors that are correctly detected to the total number of gross 
errors in measurements 

Number of type I errors - If a measurements does not 
contain a gross error and the test statistic 
identifies the measurement as having a gross 
error, it is called a type I error 

Random and gross error reduction - the ratio of the 
remaining error in the reconciled data to the 
error in the measurement 
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Comparison of Gross Error Detection Rates 
390 Runs for Each Algorithm 
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Comparison of Numbers of Type I Errors 
390 Runs for Each Algorithm 
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Comparison of Relative Gross Error Reductions 

645 Runs for Each Algorithm 
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Results of Theoretical and Numerical Evaluations 

Tjoa-Biegler’s method has the best performance 
for measurements containing random errors and 
moderate gross errors (3F-30F) 

Robust method using Lorentzian distribution is 
more effective for measurements with very large gross 
errors (larger than 30F) 

Measurement test method gives a more accurate 
estimation for measurements containing only random 
errors.  It gives significantly biased estimation when 
measurements contain gross errors larger than 10F 
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Economic Optimization 

Value Added Profit Function 

sF64F64 + sFS8FS8 + sFS14FS14 - cF50F50 - cFS1FS1 - cF65F65 

On-Line Optimization Results 

Profit 
Current Optimal 

Date ($/day) ($/day) Improvement 

6-10-97 37,290 38,146 2.3% 
$313,000/yr 

6-12-97 36,988 38,111 3.1% 
$410,000/year 
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Recommended Optimal Implementation of On-Line Optimization 

31 
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Interactive On-Line Optimization Program 

1. Conduct combined gross error detection and data reconciliation to detect 
and rectify gross errors in plant data sampled from distributed control 
system using the Tjoa-Biegler's method (the contaminated Gaussian 
distribution) or robust method (Lorentzian distribution). 

This step generates a set of measurements containing only random errors 
for parameter estimation. 

2. Use this set of measurements for simultaneous parameter estimation and 
data reconciliation using the least squares method. 

This step provides the updated parameters in the plant model for economic 
optimization. 

3. Generate optimal set points for the distributed control system from the 
economic optimization using the updated plant and economic models. 
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Interactive On-Line Optimization Program 

Process and economic models are entered as equations in a form 
similar to Fortran 

The program writes and runs three GAMS programs. 

Results are presented in a summary form, on a process flowsheet 
and in the full GAMS output 

The program and users manual (120 pages) can be downloaded 
from the LSU Minerals Processing Research Institute web site 

URL http:// www.leeric.lsu.edu/mpri/ 
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Some Other Considerations 

Redundancy 

Observeability 

Variance estimation 

Closing the loop 

Dynamic data reconciliation
 and parameter estimation 
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Status of Industrial Practice for On-Line Optimization 

Steady state detection by time series screening 

Gross error detection by time series screening 

Data reconciliation by least squares 

Parameter estimation by least squares 

Economic optimization by standard methods 
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Summary 

Most difficult part of on-line optimization is developing and 
validating the process and economic models. 

Most valuable information obtained from on-line 
optimization is a more thorough understanding of the 
process 
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