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Problem and Research Objectives

Water use in Baton Rouge, Louisiana is approximately 629,000 m’ per day (166 million gallons
per day) out of which 88% is ground water and the rest is surface water (Sargent, 2007). Due to
excessive ground water pumping, saltwater is intruding from the saline aquifers in the south part
of the Baton Rouge Fault. Thus, in the absence of any remediation measure, some of public
supply water wells in East Baton Rouge Parish are under the threat of being abandoned in the
near future. The project objective is to develop saltwater intrusion models to be employed for the
management and remediation of the ground water resources for the study area shown in Figure 1.
The study area is approximately 500 km”. To ensure a valid saltwater intrusion model, the
interim report develops stratigraphy models that capture the complexity and heterogeneity of the
subsurface geology in the Baton Rouge area.
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Figure 1: The study érea. Red dots”are electrical logs. The base map is created by Louisiana GIS
Digital Map 2007. The fault lines are obtained from McCulloh and Heinrich (2012).



Due to limited amount of data and since model uncertainty always exists, multiple models are
usually developed. Model selection, model elimination, model reduction, and model
discrimination are commonly used to select the best model. It is clear that modeling uncertainty
is always underestimated if only the best model is used. One would ask why only the best model
is used afterwards when so many efforts have been devoted to calibrating many models. This
certainly wastes valuable resources and important information from other good models.
Hierarchical Bayesian model averaging (HBMA) best utilize all possible models for model
prediction and application under Bayesian statistical framework. HBMA presents several
advantages over model selection: (1) Information from all possible models is used based on their
model importance (model weights). Calibration efforts are not wasted. (2) The model importance
is based on the evidence of data, which avoids over-confidence in the best model that does not
have a dominant model weight. And (3) model structure uncertainty is increased and is better
presented than that by using a single model. Moreover, HBMA is able to distinguish model
uncertainty arising from individual models and between models. HBMA is able to identify
unfavorable models even though they may present small prediction uncertainty.

In this study, HBMA is used to construct stratigraphy for the Baton Rouge aquifer system.
Indicator geostatistical techniques are used to analyze electrical resistivity logs and reconstruct
the subsurface accordingly. The HBMA is applied to analyze the conceptual model structure
uncertainty arising from the different sand-clay line cutoff values for the resistivity logs and the
different sand-clay cutoff probabilities for the interpolated values.

Methodology
(1) Indicator Kriging
Given the volumetric domain D < R", the indicator function {I/(x,v) : x € D} is a random
function. The indicator random variable v describes the spatial extension of a categorical
variable C, which is the sand-clay distribution in aquifers under different sand-clay line cutoff «
as determined from the electrical resistivity logs. The random function of the indicator random
variable of class C'is defined as:
1vecC, vix) >«
It v) = {0 v &C, v(x) < oc} (1)
where /=1 is sand and /=0 is clay in this study. The indicator function /(x,v) is a random
function of two variables in which v is an outcome of random variable at location x in which the
one and zero indicates the presence of sand and clay, respectively. The indicator variogram has
the same definition as the normal variogram except that the real random function is replaced by
the indicator random function /(x) as follows

v, () = s TPl (= 10+ B))? &)

2N (h) <=
where N (h) is the number of pairs within the lag interval h. The main source of the sample data,
which are used to generate the IK variograms, is from the electrical resistivity logs that are
provided by the Louisianan Department of Natural Resources (DNR), the Department of
Transportation and Development (DOTD), the United States Geological Survey (USGS), the
Louisiana Geological Survey (LGS), and the Baton Rouge Water Company (BRWC). In the
study area shown in Figure 1, we have more than 350 electrical logs.

For each foot and for every resistivity log location, the resistivity values indicate either sand or
clay depending on the sand-clay line cutoff as determined from the clay line in the resistivity



curves. Another source of data is from the study of Wendeborn and Hanor (2008), in which they
analyzed spontaneous potential (SP) curves to identify the sand-clay distribution along the Baton
Rouge fault. The interpretation of these logs in terms of sand-clay sequences are amended to the
main data to provide more sampling locations. All observation points are amended together
through linear interpolation over each foot. The number of samples in each observation point
varies from 800 to 3000 depending on the depth of each borehole. Thus, over a depth z with an
increment of 1 foot, an experimental variogram is generated. A pseudo 3D horizontal
experimental variogram is obtained by averaging all the 2D experimental variograms for all
depths.

Under the basic assumption that the sample domain is stationary, ergodic and sufficient to
reliable reproduce the statistics, the obtained theoretical variogram is used for the indicator
kriging interpolation as a method for constructing the subsurface stratigraphy. The aim of kriging
is to estimate the value of a random variable at unsampled points. Over a defined cell size, which
is 200 m X200 min this study, indicator kriging uses weighted average of the neighboring
sample data points to estimate the indicator value in each cell using the following system of
equations:

[ ;/(xl,xl) ?/(xlaxz) L }/(xlax‘\/) 1] /11 1 [ }/(xlbxo) ]
y(x,x) v(x,x) L y(x,x,) 1|4 (x5, %))
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in which y(x;,x;) is the variogram of v between the data points x; and x; , and the y(x;, X,) is the
variogram between the data point x; and the target point x,. To guarantee that the estimates are
unbiased, the sum of the weights A; is one. The unbiased constrained is imbedded to the
minimization problem through the use of the Lagrange multiplier L. Once the weights for each
data point are obtained, the last step is to calculate the expected indicator value and the indicator
kriging variance by using the following equations.

v*(x0) = M, 4l () and of = bTA @

(2) Hierarchical Bayesian Model Averaging (HBMA)

To cope with sources of uncertainty in stratigraphy models, a hierarchical Bayesian model

averaging is developed. Consider Mj_1m) € My a model at level p. The subscript ~ (ij ...Im)
~ ~——

b p
locates the model hierarchically top down from the first level, to the second level and so forth to
reach to level p. For example, My € My is modeli at level 1, M¢;y € M; is model j at level 2,

which is a child model to parent model i at level 1. M) € M3 is model k at level 3, which is a

child model to the parent model j at level 2 and the grandparent model of model i at level 1.
From bottom up, parent models M,_; at level p—1 is composed of the child models M, at

level p. Models M,,_; at level p—2 are composed of models My_; at level p-1 and so forth
until the Hierarch BMA model M, is reached.

Consider base models at level p. According to the law of total probability, the posterior
probability for predicted quantity A given data D is



Pr(A|D)=E,E, L E, [Pr(A|D,Mp)] (5)

where Em, is the expectation operator with respect to models M, at level p. Pr(AlD, Mp) is the
posterior probability of predicted quantity A given dataD and models M, at level p. The
expectation Em,, [Pr(AlD, Mp)] is posterior probability averaging at level p. That is

Ey, [Pr(A |D,M, )] = Y Pr|A|D, My, I%I))Pr(M@LZIE) |D, M%)] : (6)
where Pr A|D,M(IHL2%1)) =Pr(A|D,M, ).
PT(M% i) | D, M(&le)] = Pr(Mp | D,Mp_l) is the conditional posterior model probability of

model M. 1m) at level p under model M;_ 1y at level p-1. Pr(M10 | D, Mp_l) also represents the
P T

conditional model weights and will be used to develop a BMA tree of model weights. Note that

model M 1my is a child model under the parent model M 1y because both have the same

subscript for the first p—1 levels. Equation (6) is the Bayesian model averaging (BMA) at

level p, which can be written as
Pr(A|D.M_)=E, [Pr(A|D,Mp)] (7)

According to equations (5) and (7), one can derive the posterior probability of prediction using
BMA over models at any level, say level n:

Pr(A|D,M,)=E, E, L E, [Pr(A |D,M, )] : (8)

Based on equation (8), the law of total expectation and the law of total variance, the prediction
mean, within-model variance, between model variance and total variance can be derived at level
n.

In this study, A is the indicator value and D is drillers logs to be used to calibrate stratigraphy
model parameters.

Principal Findings and Significance

(1) Stratigraphy model calibration

For results and discussion, we use the following short forms. The first level of uncertainty has
three propositions, which are Exponential (Exp), Gaussian (Gus) and Pentspherical (Pen)
variogram models. The second level has global (G) and local (L) stationarity assumptions. The
third level has the calibration data set with an interpretation favoring more sand (D1) or more
clay (D2). The fourth level of uncertain has the geological conceptualization with respect to the
Denham Springs-Scotlandville Fault resulting into two zones (Z2) or three zones (Z3) model. For
example, Z3D1LExp is the name of a model with three subdomains (Z3), using the first
calibration data set (D1), local stationarity assumption (L) and Exponential variogram model



(Exp).

To account for all the modeling propositions, we calibrated 24 models for the IK sand-clay cut-
off ratio and the dipping angle for horizontal correlation. The best model is Z3D1LExp. The
minimum, mean and maximum cut-off ratios of the 24 models are 0.3879, 0.4092 and 0.4389
respectively. These ratios are in agreement with the 0.402+0.0013 mean estimated sand ratio of
the 24 models, and the calculated sand ratios from the driller logs data set 1, driller logs data set
2 and resistively logs being 0.3731, 0.4041 and 0.395 respectively. Unlike previous IK studies
[Johnson and Dreiss, 1989; Falivene, 2007], which consider at cut-off ratio of 0.5 as a reasonable
assumption, this study shows that cut-off ratio can be viewed as probabilities of occurrence as
suggested by Chiles and Delfiner [1999], and that a fixed cut-off 0.5 may result in over and
under estimation. The calibration results of the 24 models show minimum, mean and maximum
dipping angle percentages to be 0.30, 0.56 and 0.79 respectively. This agrees with the geological
assumption that the aquifer system is dipping southward [Griffith 2003]. The mean dipping angle
and range are in good agreement with the 0.52% dipping angle as estimated from the geophysical
logs of boreholes BR-1268 and BR-1028 in the BB’ cross section in Griffith [2003].

Figure 2 shows the stratigraphy of the “1,200-foot”, “1,500-foot”, “1,700-foot” and *“2,000-foot”
sands between the Denham Springs-Scotlandville Fault and the Baton Rouge Fault for the best
model, Z3D1LExp. To verify the correctness of the stratigraphy, we plot municipal and
industrial pumping wells and USGS observation wells into the figure and confirm that all the
screen intervals are in the sand portion. Figure 2 demonstrates the first time ever that we are able
to understand the Baton Rouge aquifer system in detail. From Figure 2, the “1,200-foot”, “1,500-
foot”, and “1,700-foot” interconnect in the area close to the Baton Rouge Fault. Figure 2 also
shows four sands between the “1,200-foot” sand and “2,000-foot” sand. There is a distinct clay
bed separates the “2,000-
foot” sand from its overlying
sand. Figure 2 also allows us
to verify USGS well naming,
facilitate determination of
new monitoring wells, and
locate proper depth for
remediation designs.

I
. . I “1,200-foot” sand
Figure 2: Stratigraphy of the .
“1,200-foot™, “1,500-foot”, . [.,i'. | :
“1,700-foot” and *“2,000- ~#4,500-foot” sand
foot” sands between the L =
Denham Springs- I “1,700-foot” sand

Baton Rouge Fault. The
vertical lines are pumping
wells and USGS observation
wells.

Scotlandville Fault and the : |

“2,000-foot” sand




Using the best model, Figure 3 shows the stratigraphy of the Baton Rouge Fault (BR Fault) and
the Denham Springs-Scotlandville Fault (DSS Fault) for the northern face and the southern face.
Juxtaposition of the two faces immediately locates the possible leaky areas for the Baton Rouge
Fault to allow saltwater to encroach into the freshwater aquifers. Due to large downthrow, sand
connection through the Baton Rouge Fault is limited. However, it is clear to see that there is an
enormous area that the “1,500-foot” sand north of the Baton Rouge Fault connects the “1,200-
foot” sand south of the fault. The leaky area of the Baton Rouge Fault for the “2,000-foot” sand
is very small. This may explain why saltwater intrusion in the “1,500-foot” sand is much severer
than in the “2,000-foot” sand. The Denham Springs-Scotlandville Fault shows better hydraulic
connection through the fault.
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Figure 3: Stratigraphy of the Baton Rouge Fault and the Denham Springs-Scotlandville Faults.
Blank areas are sands. The leaky areas through the faults are identified by juxtaposing the
northern face and the southern face of the fault stratigraphy.

(2) Model weights

We calculate the model weights using both Occam’s widow and different variance windows. The
best model has the BIC,;, being 3.707x 10*. The numbers of data points are 31500. Due to the
large data size, the Occam’s window as expected singles out only the best model. Tsai and Li
[2008b] provide a table for the scaling factors for 1% and 5% significance levels for three op,



which are used here. Model weights of less influential models increase as the significance levels
and number of sigma increase that consecutively decrease the weights of the significant the
models. Model Z3D1LExp shows to be the only significant model since it only decreased in
weight, while all other models increased under all the variance windows.

H
10|O%
[ |
(modeling proposition) ~ --------- z2 73
(conditional model weight) ~--------- 25.88% 74.12%
(model weight) - (25.f|38%) (74.|1 2%)
[ | [ |
D1 D2 D1 D2
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Figure 4. The BMA tree of model weights and conditional model weights for 24 models. Dots
present models with model weight less than 1%.

The BMA tree of model weights and conditional model weights for 24 models is shown in Figure
4. The best model is Z3D1LExp, which has a model weight of 45.34%. Exponential models
generally tend to perform better than the Gaussian and Pentspherical models, which tend to show
similar results. Other modeling propositions of model Z3D1LExp, which are local stationarity
(L), first data set (D1) and three subdomains (Z3), tend perform better than other competing
propositions. As expected, the worst model is Z2D2GPen, which does not share a single
proposition with the best model. The second worst model Z2D2LPen shares only local
stationarity (L) proposition with the best model.

(3) Uncertain propagation

Smaller variance windows can be used when one is certain that only the best model is the
significant model. Large variance windows are used when this is not intuitively clear and to
avoid underestimating the variance. For our purpose, we use large variance window of 5% with
3o to increase the variance estimation to clearly understand the variance propagation of the
within model variance (WMV), between model variance (BMV) and total model variance
(TMV). The total uncertainty at each level as expressed by the TMV is the summation of the
BMV and WMV at this level. For this purpose, we present a 2D cross section of the south side of
the DSS fault with a grid spacing of 50 m in the horizontal direction and 1 foot (0.304 m) in the
vertical direction. The X-axis of all the plots is in [m] to agree with UTM-NADS3 coordinate
system and the Y-axis is in [foot] to agree with the aquifer nomenclature in the study region.

To better understand the uncertainly propagation, we discuss the WMV, BMW and TMV for the
branch of the best model starting with Z3D1L model at level one followed by Z3D1 model at
level two , Z3 model at level three and HBMA model at level four. The four plots in Figure 5
show the BMV for the four uncertainty levels, which illustrates the previous remark that the
BMV at a certain level is independent from the BMV at other levels. Another remarkable



observation is that the Z3D1L Z3D1 and Z3 BMA models have similar uncertainly patterns, yet
with different values. The similar uncertainly patterns indicate again that the best model is
dominating the BMV. Different values indicate the importance of different propositions at
different level. This means that local and global variogram models are both good propositions as
indicated by the high BMV values of Z3D1. On the other hand, the low BMV of Z3 indicates
that the using different calibration data sets, which results in different dipping angle and cut-off
values, has small impact on uncertainty. By comparing Z3D1L, Z3D1 and Z3 models with the
HBMA model, we observe different pattern of uncertainty. This shows that the two subdomains
and three subdomains propositions produces relatively different estimations, which is depicted in
Figure 5.
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Figure 5. BMV at south side of DSS fault for BMA models Z3DI1L, Z3D1, Z3 and HBMA

The WMV at the first level averages the IK variance of all sub-models in each branch, and
averages the TMV of the BMA models at higher levels. The Z3D1L BMA model in Figure 6
shows the averaging of the IK variance of the three calibrated models Z3D1LExp, Z3D1LGus
and Z3DI1LPen. Regions with close proximity to the geophysical logs have lower variance
values. This is expected since Kriging variance depends only on the distance from the
observation points in which the variance of the estimation error is zero at the data location, and
regions with less data have higher variance. The vertical strips of high uncertainty values of the
Z3DI1 model in Figure 6 illustrates that the WMV in the second level is based on the TMV of the
first level. In addition, the WMV sub-plots of Z3 model and HBMA model in Figure 6, illustrate
the previous remake that the WMV does not monotonically increase in value, yet more
uncertainly regions are being added. This provides an important remark that the regions of
uncertainty will always increase by adding more sources of uncertainty, but the variance values
can decrease.
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Figure 6. WMV at south side of DSS fault for BMA models Z3DIL, Z3D1 73 and HBMA.

The last part of the variance discussion is the TMV, which represents the total uncertainty. The
first sub-plot of Figure 7 shows the TMV adds the BMV and WMV. The propagation of
uncertainty and the monotonic adding up of uncertainty for the branch of the best model is
clearly depicted in Figure 7. Another noticeable remake is that the BMV is taking over the
WMV, which indicates that uncertainty due to different levels of uncertainty and competing
propositions in each level is higher than the uncertainty arising from the different IK variances of
the competing models.
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Figure 7. TMV at south side of DSS fault for BMA models Z3D1L, Z3D1, Z3 and HBMA



