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ABSTRACT

The principle of maximum entropy (POME) is used to perform a
multivariate stochastic flood analysis. By specifying appropriate
constraints in terms of means, variances, covariances and cross-
covariances, various multivariate exponential distributions are derived.
From these distributions, univariate, bivariate and general multivariate
stochastic models are then derived. Both continuous and discrete cases
are examined. Special emphasis is given to the structure of the matrix
of Lagrange multipliers in the model.

The bivariate stochastic model for flood peaks and volumes is
investigated for two cases: (1) The peaks and volumes are independent
and occur the same number of times. (2) The number of peaks is more
than that of volumes in the same time interval. Testiﬁg on two
Louisiana rivers shows that case (1) is an approximation of case (2).
Marginal frequency distributions of peaks, volumes and durations are
obtained, first with no restrictions imposed, and then with assumptions
of independent occurrences and a high threshold value. Conditional
distributions of flood volumes, given peaks and of flood durationms,

given volumes and peaks are then presented.
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1. INTRODUCTION

Stochastic approaches to flood analysis have been developed along

_ two major lines: (1) analysis of flood peaks using the theory of proba-

bility, and (2) streamflow synthesis using time series analysis.

In the first category are considered the floods exceeding some
threshold value Xo (partial duration series approach) in a given time
interval, or their maxima (complete duration series). Complete duration
series primarily treats flood extremes and the time interval is usually
a year, but can be longer. Partial duration series usually considers
smaller time intervals. Both partial and complete duration series treat
one stochastic process of flood characteristics and appear as realiza-
tions above the threshold value in a given time interval. The relation-
ship among realizations of the process is very often neglected. Mostly
presented are various univariate and multivariate frequency distribu-
tions.

The relationship among all realizations of the stochastic process
is treated in time series analysis. Flood characteristics are observed
either at specific instants of time (discrete time series) or sometimes
continuously (continuous time series). Observations are usually in
terms of discharges or water level elevations of streamflow. All other
characteristics are calculated using these observations. A simple model
for streamflow in this category is represented by a single probability
function f(x,8) with 6 as row vector of the parameters (61, 92. csss en)
valid for the positions in time tis hs eeen oo ® can, for example, be
streamflow discharge while each component ei (1=14, ..., n) is parti-

cular realization of that discharge at specific time t This realiza-

i.

tion is just one of infinite possible realizations and is therefore



random. 6 is random vector and its components constitute the random
sequence. In time series, this sequence 1s ofteﬁ represented by second
moments such as variances or covariances (autocovariance for one
realization and cross covariances for more realizations). Furthermore,
one assumes second order stationarity and studies only the realizations
of stationary random sequences.

The above two categories have been developed almost independently,
but how they are related to each other is not clear except that they
treat different aspects of the same subject. Recently, entropy theory
has yielded encouraging results in both categories. In this study, we
provide a brief historical review of this theory and extend it to flood
analysis.

Specific objectives of this study are:

(1) To derive a multivariate stochastic model for flood analysis

using the principle of maximum entropy (POME).

(2) To show that the model attempts to bridge the two categories

based on theory of probability and time series analysis.

(3) To examine the mathematical form of the Lagrange multipliers.

(4) To investigate simplified forms of the model.

(5) To test the model using real world data.

2, HISTORICAL PERSPECTIVE
Both types of approaches to flood analysis have been widely treated
in recent years. In the first cafegory, the models of complete duration
series are primarily empirical, based on the criteria of best fit to the
data by means of Gumbel or Log-Pearson type III distribution. These
have been used extensively prior to the 1970's because of ease in appli-

cation. They consider only the biggest flood in the time interval (say,



1 year) and neglect others that may have larger peaks and volumes than
the maximum smaller floods in other years. The éartial duration series
models correct that disadvantage by considering all flood peaks
exceeding a given threshold value. The partial duration series models
are more versatile than the complete duration series models.

Borgman (1963), and Shane and Lynn (1964) found the distribution
function of the flood peaks in a certain time interval (0,t) assuming
their number to be a time-homogeneous Poisson process. The flood
magnitudes were assumed to follow an exponential distribution.
Todorovic and Zelenhasic (1970) considered the case where the number of
exceedances follows a nonhomogeneous Poisson process with the sequence
of flood discharges kept exponentially independently identically distri-
buted (iid). Todorovic and Rousselle (1971) relaxed independency
assumption while dividing the water year into different seasons and
keeping the iid assumption only within the season being considered.
Todorovic and Woolhiser (1972), using the same assumptions, derived the
distribution function for the time of the largest peak occurrence.
Gupta, et al, (1976) found the joint distribution of the largest flood
peaks and their associated times.

Todorovic (1978) generalized the previous results, and derived
conditional distribution of the flood magnitude, given the time of
occurrence. In spite of these generalizations and some further
contributions (North, 1980, Ashkar and Rousselle, 1982), Todorovic
retained the iid assumption, and consequently these models are valid
only for a high threshold value. This assumption neglects seasonal
variations, and the choice of a high threshold value may render a model

invalid for lower threshold values.



A theoretically more general model was developed by Kavvas and
co-workers (Kavvas and Delleur, 1975; Kavvas, 1982; Kavvas,vet al.,
1983) treating flooding as the clustering phenomenon and its mechanisms
as centers of clusters of flood peaks. Althéugh the disadvantages of
the m&&els developed by Todorovic and co-workers were removed, this
model is not widely used because of its mathematical complexity.

In the second category are various models of time series analysis.
The simplest ones are ARMA models (Thomas and Fiering, 1962; Yevjevich,
1963; Box and Jenkins, 1976). These models have been widely used for
modeling locng-term dependent hydrologic sequences assuming that flood
mechanisms can be represented by either autoregressive (AR) or moving
average (MA) components of the model. They do not simulate short-term
properties satisfactorily.

Entropy, the subject matter of this report, was first defined by
Bolzmann (1872) who used it in thermodynamics. A mathematical theory of
entropy was developed by Shannon (1948a, 1948b) who used it in communi-
cation theory. A valuable contribution was made by Jaynes (1957) who
expressed the principle of maximum entropy (POME). This principle has
been applied to virtually all technical fields, for example, geophysics,
radio-astronomy, communication theory, structural reliability, linguis-
tics, economics, statistical physics, and hydrology. Wide ranging
applications have been reported in workshops on entropy held regularly
since 1981. Their proceedings serve as a guide to both mathematics and
technology of entropy theory (Smith and Grandy, 1985).

Entropy has only recently been applied to hydrologic analyses.
Sonuga (1972, 1976) used POME successfully in frequency analysis and

rainfall-runoff mddeling. Amorocho and Espildora (1973) used it for



assessment of uncertainty in hydrologic frequency analysis. Jowitt
(1979) used POME in parameter estimation. The most comprehensive
derivation, using POME, of many frequency distributions used in
hydrology was presented by Singh, et al. (1985, 1986). This work showed
that ﬁy using POME, any probability distribution function (pdf) of
exponential type can be obtained. Singh and Krstanovic (1985, 1986)
applied POME to sediment yield, phosphorus loading and rainfall networks
design (1986). Some new perspectives on applications of entropy in
water resources have been discussed by Rajagopal, et al. (1986). They
summarized advantages as well as disadvantages of the theory and its
potential in hydrology, e.g., maximum entropy histograms originally
derived by Collins and Wragg (1977).

In time series analysis, entropy was applied first in the astronomy
(Ables, 1974). A landmark contribution was made by Burg (1975) that
changed the theory of spectral analysis. This work has found useful
applications in reconstruction of pictures, signals, waves, etc. These
new perspectives are best summarized by Jaynes (1982) who also suggested

guidelines for further research.

3. MATHEMATICAL PRELIMINARIES

3.1 Entropy and its Properties

Entropy is defined as expectation of information or measure of
uncertainty. Let S be a system of events, El’ EZ’ coey En’ and p(Ek) be
the probability of k-th event to occur. The entropy of the system S is:

H(S) = - k fu p(x) 1np(x) pX (1)
where k is an arbitrary positive constant, Q probability space, and

p(x) is pdf associated with the random variable X from the probability



space . From now onwards, k is absorbed into the base of the
logarithm, and (1) 1is written as:

H(S) = - /o p(x) In p(x) dx (2)
Equations (1) and (2) represent the entropy of a continuous distribution

with one random variable. For m-dimensional distribution p(Xl, X

2, soo 9

Xm), the entropy is defined as:
H(S) == J .o, [ p(xl, ceus xm) 1n p(xl, ooy xm) dxl cee dxn (3)
For two random variables Xl and X2’ the joint and conditional entropies

of (Xl,Xz) can be defined as

H(Xl,Xz) = - ff p(xl,xz) ln[p(xl,xz)] dxl dx (4a)

2

p(xl,xz)
p(x;)

P(%,,%,)
p(x,)

] dx, dx (4b)

H(X, X)) = - JJ P(x;,%,) In[ 1 9%,

H(Xlixz) = [f p(xl,xz) 1n| ] dx1 dx2 | (4¢)

The properties of entropy for continuous variables are:

(1) 1If X is confined to a certain volume v in its probability
space Q then H(X) has its maximum log v when p(X) is comstant (= 1/v) in
that volume. Entropy maximum corresponds to the uniform pdf in proba-
bility space Q. We say that nothing 1s known about X and the uncer-
tainty is the highest.

(2) 1I1f one of the events (Ek) is absolutely certain, the entropy
achieves its minimum (H(X) = 0) and the uncertainty.is the lowest.

(3) Joint entropy of two random variables (rv), X,Y is smaller or
equal to the sum of individual entropies. Equality is achieved only if
two rv's are independent.

(4) Entropy decreases with increasing knowledge about the vari-

ables of the system. Consequently, H(Y) > H(le) and H(X) > H(X[Y).



(5) When assignment of the probabilities to various events is made
by maximizing entropy subject to given information, then that assignment
is minimally prejudiced as it excludes all assumptions and makes maximum
use of the given information (POME). This then defines the principle of
maximum entropy. This procedure prescribes adequate information and
uses that information as conmstraints in order to describe the proba-
bility distribution. Usually‘these constraints are mean values of
different statistics Ak' From now on we write Ak for the quantity and
Aﬂ for its expected value:

Ai =/ dx p(x) Ak(x) . (5)
Equation (5) is valid for both one-dimensional and multi-dimensional
cases. Equation (2) or (3) is then maximized subject to (5), usually by
the method of Lagrange multipliers. The resulting distribution p(x)
will be most congistent with the information given by (5).

(6) Entropy concentration theorem (Jaynes, 1979) gives distribu-
tion of other entropies around the maximum entropy. It will not be used
in this report.

For practical purposes, we normally deal with discrete entropy. To

that end, mathematical equivalents of (1) - (4) are:

n
H(S) = - k 121 P(xy) In[p(x,)] (6a)
n .

H(S) = - 21 p(xy) Inlp(x,)] (6b)

i=
n1 nn
H(S) = = IT .i. I Pp(Xys eves X ) In p(Xyy eees X)) (6c¢c)
{=1 Y 1 n 1 n
iy )
H(xl’xz) =~ I z p(xli’xzj) In p(XZi’XZj) (6d)

1=1 §=1



sl 32 P(xy 4%
H(X, X)) = - R e Pl g%pp) Tl (6e)
n, n px..,%x,.)
_ 1 .2 11’72
H(X, X)) = - 121 321 P(xpys%,5) Inl Py ] (6£)

Here n is the number of possible events for one-dimensional random
variable X; ny and n, are number of events for rv's Xl and Xz, respec-
tively; Nys eee5 M, are number of events for rv's in multi-dimensional
space § = {Xl, Xos eees Xm}.

Discrete entropy preserves all the properties defined for its
continuous counterpart. However, there are two important differences:
(1) Continuous entropy changes under coordinate transformation. There
is no such problem for the discrete counterpart. (2) Discrete entropy
uses the frequencies of possible occurrences or probability of long
sequences. Continuous entropy uses probability density for a long
series of samples. In this study, we treat both continuous and discrete
entropigs.

3.2 Entropy and Time Series

The best application of entropy to time series analysis can be
found in Jaynes (1982) and Shilling and Gull (1984). Let X be a random
variable with realizations in time interval (-T/2,T/2). From now
onwards, we call X as a random process if it has continuous realizatiomns
in (-T/2,T/2) and write X(t) = {x(t), -T/2 < T < T/2}. Consequently, we
use continuous definition of entropy. X is called the random sequence
if it has only finite number of realizations in (-T/2,T/2), and we write
X(t) = {x_le, cees Xps eens lez}, and consequently discrete definition
of entropy is used. This discussion encompasses only one time series

vhere we measure certain flood properties (e.g., discharges, peaks,



volumes, etc.). Quite often we need to monitor two or more flood
properties in the same time interval. Thus, we ﬁeasure two or more time
series. In that case, we define X as multi~-dimensional random sequence
X = {Xl, X2, ceey Xm}, where m is the number of properties measured and
Xi(t) is one random variable defined either as continuous or as
discrete. |

3.3 Entropy and Floods

Entropy can measure objectively the information content of a
hydrological process. From its very definition, it is unbiased as it
exclude all our assumptions and yields results consistent with respect
to the information provided. These results may include pdf obtained by
applying POME to any space-time function or pdf consistent with descrip-
tion in Section 3.2. Specifically, entropy can be used to analyze a set
of simultaneous hydrological sequences: peaks, volumes, durations, etc.
Each sequence carries its own information content on one time scale,
e.g., realizations of flood peaks in one hydrological year. The various
sequences interact among themselves and may not be independent. For
example, in a given time interval (e.g., one month) flood peaks, dura-
tions and volumes will be closely related; floods of bigger volumes can
be expected to have longer durations and higher peaks. This dependence
among sequences can be specified as a constraint‘in the model using
entropy. Furthermore, we may examine how the information of one
sequence (e.g., peaks) influences the realization of another sequence
(e.g., durations). This transfer of information might help improve
prédictions inside the given sequence (duratioms). Many scenarios are
possible for building models, with the freedom to examine both space and

time interactions uncharacteristic of other models.
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4. MULTIVARIATE STOCHASTIC ANALYSIS

4,1 Continuous Description

4.1.1 Univariate Analysis

Let X be a one-dimensional random process of any flood charac-
teristic (e.g., peak, volume or duration) and T the length of historical
record from which the measurements are available. Then

X(t) = {X,(0)} = {x,(¢), -T/2 < t < T/2} €}
The elements in the first bracket represent realizations of the flood
characteristic. For a stationary process, the dependency among the
elements is measured only by lag, and not by the position on the time-
axis itself. Our objective is to derive a univariate pdf associated
with the maximum of entropy H(X) as defined in (2). Sufficient
information about the process is given in terms of variance and
autocovariances of the process:

() = & /T2 [x(e) - ) [x(eH) - X1 ae ®)

where X is the mean defined as

= - 1 +T/2
X %im T I-T/Z xi(t) dt 9)
->00
and - m, < k < m, where -T/8 <m < T/8. Since c(k) = c(-k), the
maximum number of different constraints 1is m, + 1. The constraints for

POME are coﬁveniently defined as:
A(k) = T c(k) (10)

Taking limit of T to =, and applying L'Hopital's rule
+o - -
A(k) = s__ [x(t) - x] [x(t+k) - x] dt (11)

From data we have numerical values of Aé, Ai; cees A; Maximizing (2)

1.
subject to (11) and



ft: p(x) dx = 1

(12)

we obtain pdf consistent with maximum entropy as:

p(X) = Z%A) exp[- AA)

where

A‘[A- 9 oo oey A’ -..,A
ml 0 m1

(13a)

(13b)

11

Z(A) is the partition function usually determined from (12) and A is the

vector of the constraints A(k):
A(-ml)

A= A0)

.

A(m

Al
The pdf of X can be rewritten as:

1 oy
p(X) = A exp{- . T Ay

At O-th lag, (15) simplifies to:
p(X) = 1 exp{- A, T 02}
Zikoi 0 X

where Z(AO) is determined from:

9
- m 1n Z()\o) = Ao

+o 2
Z(Ao) = J__ exp{- ho T cx}.dx

4.1.2 Bivariate Analysis

Let X be two-dimensional random

(14)

[x(t) - x] [x(t+k) - x] dt} (15)

(16)

17)

(18)

process of two flood properties X

and X2 (e.g., peaks and volumes) and T defined as before. Then

1
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X(£) = {X)(6), X, ()} = {[x(t), -T/2 < ¢

[x,(t), -T/2 < t

IA
Ia

T/2},
T/21} (19)

A

Ihe elements xl(t) and xz(t) represent realizations of peaks and
volumes respectively. Usually we create the pair (Xl,Xz) such that its
elements are associated: single peak hydrograph combines Xl and X2
uniquely in time interval; and multiple peak hydrographs combine unique
X2 and one of the peaks Xl. For a stationary process, the dependence
among elements of Xl(t) and Xz(t) is measured only by the time lag.

Our objective is to derive bivariate pdf associated with joint

entropy H(Xl,Xz) as defined by (4a). The information about the process

X(t) is expressed by autocovariance and cross covariance matrices (c

ii
and cij) combined into information data matrix as:
c c
c - 11 12 : (20)
Xl,X2 c c
21 22

This matrix is called a partitioned matrix in multivariate analysis,

Its elements are matrices that have the same number of rows and columns.

4 and cij are of the dimension (m1+1) X (m1+l) where ~T/8 <m

In autocovariance matrices, €11 and Cogs My is the number of lags

< T/8.

used, while in cross covariance matrices c12 and c21, m1 is the number

of lags by which Xl is behind or in front of X2. Since flood peaks X

will always be in the front, and never behind Xz, c

1

12 and c21 will be

lower and upper triangular matrices, respectively.

These matrices contain the most information about the process:



13

i c(0)
c(-1)
C i, = : : (-m, <k < 0)
12 ¢ (~k) l1-" -
elm)  e(-k)  e(-1)  c(0)
c(0) c(l) ... e(k) ... c(ml)
¢ (k)
Cyy = . (0 <k< ml)
c(D)
c(0)
L

Each element c(k) of these matrices is defined as:

c®) = 2 A% 1x (6) - 5] Ixy(eH0) - X,] at (22)

where §1 and ;2 represent means of xl(t) and xz(t) defined as in (9).
The information constraints A(k) in entropy formalism can be defined
with any coefficients proportional to c(k). However, the scalar product
AAk and the final conclusion will be independent of our choice. Taking

A(k) = T c¢(k) and letting limit of T to =,
AG) = S0 [x, (8) - %,] [x,(t+k) - %] dt (23)

- 7] 1 2 2
The matrix elements in (21) are now replaced by A(k) of (23), and the

partitioned matrix in (20) contains matrices A

1 3 j (i#1).

Information from (23) is available as numerical values Aﬂ defined in

and Ai and Ai

(5). We have m1+1 of these values or:

A', Ai’ ec ey A!:l

Maximizing (4a) subject to (12) and
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e p(xl,xz)Adx1 dx, =1 , (24)

-0 = a0

we obtain:

1

m
P(Xl,xz) = I exp[- &

1
k=0

4o - -
Ak S [xl(t) - xl] [xz(t+k) - x2] dt]
(252)
Considering all possible interactions among any two flood properties,

one can generalize (25) as:

g 2 1 4w
PR tEzm et L
ST ey (6) = %) x (641 = 5,1 de) (25b)

In (25a) and (25b) Z(A) is the partition function usually determined
from (24) and A is a row vector or

and
Ai = [AO’ Al’ ceey Am]_]

Equation (25) can be written as:

e

ST Ixg(e) = F 1xy(e) - &, lat

. (27)

1
P(Xlﬁxz) = Z_(A'S‘ eXP{A]’

I ey () - R lixy(t4m) = Xyl

-

b

We note that AO is strongly associated with covariance, Al with cross-

correlation on lag apart, etc. (27) can be written as:

1 T
P(XI,XZ) = E?K;T exp{- Av Av} (28)

where subscript v denotes vector and superscript T denotes its transpose.
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For the cases with strong correlation at associated time intervals

and weak correlations for k > 0, the covariance term with A

0 will be
dominant. Then (25) and (28) will simplify to:
1
p(Xl,Xz) = ETXST exp[- AO T cov(Xl,Xz)] (29)

for any associated pair (Xl’XZ)' This assumption introduces indepen-

dency among different occurrences (xl’XZ)’ with x. € Xl(t) and x, €

1 2

Xz(t).
From the bivariate process, one can derive the univariate case when

two random variables Xl and X, are equal. For that case, data matrix

(2) (dimension 2 x 2) becomes Cx1 = [c11] (dimension 1 x 1), where ¢

11
is the autocovariance matrix with autocovariance elements defined in
(8). Similarly, the information constraint A(k), dependent on. the
crosscovariance c(k) of the lag k, becomes dependent on the auto-
covariance of the same lag. Since autocovariances are symmetric with
respect to zero, A of (26) increases its element by o, and becomes A
defined in (13b). Consequently, the pdf of the bivariate process
becomes the univariate pdf.
4,1.3 Multivariate Analysis

We extend the univariate and bivariate analyses to multi-dimensional
random process X of a number of flood properties, e.g., peaks, volumes,
durations, interarrival times, etc. With T defined as before,

X(t) = {Xl(t), eees X _(£)} (30)
where m i1s the number of measured properties. All properties are

defined in the same time interval creating the total of m simultaneous

time series.
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Our objective is to derive multivariate pdf associated with multi-
variate entropy H(Xl, X2, cees Xm) as defined in (3).  The information

about the process can be expressed in matrix form as

w -
cll kclz « o s s o Clm
c21 -
cC=|. . (31)
¢ m"'l Fy
Lcml o s o o Cm,m-l cmm
-

We note that this matrix expresses dependencies across the space dimen-
sion, while each element is itself a matrix responsible for time depen-
dencies: cy4 (1 =1, ..., m) are autocorrelation matrices of the dimen-
sion (m1+1) X (m1+1). ml's will be the same if with each flood we asso-
ciate only one unique property (e.g., highest peak, one volume, one
duration, time to the highest peak, etc.). For multiple peak hydro-
graphs, autocorrelation matrix associated with the peak will be of the
highest dimension. cij (i, =1, ..., m; 1 #j) are cross-correlation
matrices of (ml+1) x (m1+l) dimension. Both parts of the matrices
(below and above the main diagonal) may be dominant so we are not
necessarily restricted to the lower or upper triangular matrix. A
matrix is written as

—

c(0) ce(l) « o . . c(ml)

c(-l) .
C,, = . . (32)
1] ) (1)
cl-m) .+ . . e(=1)  c(0)
i 1 Ji

where elements are cross-covariances defined as
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+T/2

700 ey () - &) [x,(t+) = X,] de, for k > 0
c(k) = (33)
3 IS Iyt - 2,1 [xy (k) - %] at, for k < 0

where §i and §j are the means associated with Xi(t) and X,(t) in

k|
(-T/2,T/2). We define information constraint as the matrix:

A=TC (34)
with each element Aij =T cij (1,5 =1, ..., m).
The elements of Aij are, in turn, A(k) = T c(k). In total we may
have (2 m1+1)-m possible constraints. By maximizing (3) subject to (34)
and
4o o
S o eee I+m p(xl, Xy eees xm) dx1 dx2 oo dxm =1 (35)

we obtain:

P(X;, Xy wens X ) = 2%K$ expl~ AA] (36)

where A is the row vector or

and A, = [X , cee Any ons A ]
i o, 0 my

Z(A) is the partition function and is usually determined from (35) or

3
- 51; In Z(A) = A, (38)

Assuming all possible interactions across space and time, (36) can be

written as:

1 m i +ml oo _
P(X 35X, 5000,k ) = exp{- £ I I A T [xp(8) - x,]
1°%2 w  Z(h) =1 §=1 kemy k 1 1
[xj(t-k) - Ej] dt} (39)

For the special case when we have strong correlation at lag 0 and weak

correlation for all other lags AO is dominant in each Ai matrix so that
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A= “0(1) AO(Z) xo(m)]
and
1 m 1
p(Xl,XZ,...,Xm) = T exp{- 121 jil Ao T cov(Xi,Xj)} (40)

for any associated m-dimensional random proce;s.

Multivariate random process simplifies to the bivariate and
univariate cases for m = 2 and m = 1, respectively: simplification of
(31) to (20) and to matrix €47 8iven by the elements of (8); simplifica-
tion of the multivariate information constaint A(k) to the bivariate and
univariate counterparts: simplification of (39) to (25b) and (15).

A major problem in continuous description is determination of the
Lagrange multipliers since the first partition function Z(Av) for
bivariate and univariate cases, and Z(A) for multivariate case must be
explicitly determined. This involves precise solution to the continuous
definition of either autocovariances or cross-covariances, that is still
not tractable. One way out is to resort to the discrete case taking
X(t) to be random sequence with.finite number of observatioms.

4.2 Discrete Description

4.2.1 Univariate Analysis

Let X be a stationary random sequence of some selected flood pro-
perty (e.g., flood peaks)

X(t) = {xo, Xys eees xT}
The constraints can then be written as autocorrelation matrix C with
m2+1 distinct values c(k) or

1 T~k _ -
c(k) = T+ jio (xj - X) (xj+k - X) (41)
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where x is the sequence mean and k is the lag (0 <kx< m,, and m, <
T/4). Let information constraint be defined as:

A(k) = (T+1) Cy (42)
which 1s available as numerical values Aﬂ from the data. The pdf that

yields maximum entropy is:

1 o
p(X) = 7 expl - I Ak A(k)] (43)
k=0 -
1 . *
or P(X) = Z(A) exP[' X A X] (44)

* - -
where X = (xl-x, cens xT-x), and

1

2 = 1i7

where

A cee |3-1] < m
A=l 173 2
0 ++. otherwise
We emphasize that (44) is of multivariate Gaussian form. On comparing

with multivariate Gaussian distribution:

1 1 * -1
p(X) = exp[- 5 X - u) I (X -] (45)
(2“)(T+1)/2 |E|1/2 2

The additional constant 1/2 can be taken inside A(k), while A matrix is
proportional to the inverse of the sample variance-covariance matrix I.
Thus, the POME distribution is equivalent to the Gaussian weighted

by some constant value (1/2ﬂ)(T+1)/2

. Here we assume dependency among
all terms in A matrix. It is shown in Appendix A that every new
Lagrange multiplier in the model adds one new diagonal to the A matrix

and is inversely proportional to the autocovariance or
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A = ey } _ (46)
and accounts for additional information being introduced with each new
lag. When most of the significant information is already introduced

with the O-th lag, AO is dominant and A becomes a diagonal matrix:

(X) = —%— exp[- A ;.r ., - D3 47)
P z0g) P o 2o M

and for any member of stationary sequence:

=2

(x, - x)

——1 (48)
X

p(xi) = 13 exp[~-
Sx s

where si is the sample variance. (48) is valid assuming independent
occurrences of members of the stationary sequence X(t).

Very often information is not available in terms of variances, but
only as the mean. Then equivalency with Gaussian distribution does not
hold and we use pdf that gives maximum entropy, given the mean as the

constraint (Singh, et al., 1985):

X
p(xy) = -f- exp[- -;-1] (49)
X X

4,2,2 Bivariate Analysis

Let X be a two-dimensional random sequence of two flood properties

Xl and XZ' Then:

X(t) = {Xl’xz} = {[xo: xl’ ceey lel’ [xos xl’ ceey xT]Z} (50)
The discussion about (Xl,Xz) properties for the continuous description
in section 4.1.2 remains the same. The constraint that carries the most
information from Xl to X2 and vice versa 1s cross-covariance available

from the data as the sample cross-covariance:
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( T-k
1 - -
T+1 tio [xl(t) - X1] [Xz(t+k) - xz], k = 0»1,.-,1!12
°x, x, - (51)
172 p Tk _ _
kT:I tio [x,(t) = x,1[%; (t4k) - x,1, k = 0,-1,..,-m,

where m, < T/4.
For any two flood properties X1 and X2, the number of occurrences

is either the same or onme property follows the other. If X1 is peak and

X2 volume, then the volume sequence is always behind the peak sequence,

so (51) reduces to:

T+k

[x,(t) - §2][xl(t+k) -x k =0,-1,..,-m

1]’ 2

(52)

o+

1
(k) = =—
cxlx2 ™ 2,

We define suitable information comstraint A, . (k) = (T+l) c (k).
12 X 5%,
Maximizing joint entropy H(Xl,Xz) subject to m2+1 available constaints

A12 (k =0, .c., —mz) and (24), the following pdf is obtained:

1 1 *
p(Xl,Xz) = 7D exp{- AM A} = D) exp{- Xl AM XZ} (53)
where AM is loﬁer diagonal matrix of Lagrange multipliers
AO 6 o 0 o o0 o0 o0
1_1 0
- 0
A, = . _ (54)
M A_ 0
™2
. 0]
5 0 LA N A-mz LK I ) A-l Ao 0

and

x; = [%,0) = Xy eees %) (D) = X,

Xy = [x)(0) = Fps vuey %y(T) = K,]
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Considering all possible interactions among any two flood properties,

one can generalize (53) as:

1 2 i .
PR X,) = gy exel- 121 X by jil Xy (53

Comparing (53) with the pdf of continuous case, we see that Av is
substituted by AM and the term A is factorized into two vector products
XI and Xz. Equation (54) is the matrix of the Toeplitz form. Some
properties of the Toeplitz matrices help us in solving the partition
function Z(A) and determining Lagrange multipliers A. That approach was

first suggested by Jaynes (1982). When T >> m,, from Toeplitz theory

the eigenvalues of A matrix become:

gy = g(zj)
T+1
where zj are the roots of 2z = 1 on the unit circle or
25 = exp[2rij/(T+1)] (56)
where 0 < j < T. Since the partition function is given as
T
InZ=- I 1n gj + constant
j=0
= - ln[g0 - gT] (57)

From multivariate analysis in statistics, we know that theAproduct of
the eigenvalues of the matrix is equal to the matrix determinant. Thus,
In Z = - 1n det A = - 1n|A|

and
1
Z = W (58)
From (56), we define

by k
g(z,) = I A z (59)
37 xeo ¥
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For long time base (T + =),

InZ ~» - 22 1n[g (exp T%%i (60a)
j=0
The summation becomes integration on the unit circle and roots zj will
be close to one another:
1 - _1 (2
T In Z(Ak) = -5 IO In{g(exp(ic))] do
or
nz0) = = L 27 3052, exp(iko)] do (60b)
k T 2m 0 “n  k
k=0
Finally, the Lagrange multipliers are determined from:
3 .
(T+1) cx ,X = - (37—) In Z(Ak) (61a)
1 k
2 ik :
0 - ) s 28
172 22 Ak exp (1k8)
k=0

A couple of simple examples are shown in Appendix A.

It is of interest to study simplification of (53) for some special
cases. For example, for a bivariate stationary sequence whose pairs are
strongly correlated at the same time of occurrence (as is psual for
peaks and volumes), while the rest of the pairs are weakly correlated:

[(xgys%pp) s (Xpps%p9)s ves (Rqysxpy)] (62)
These pairs are strongly correlated. Note that first subscript denotes
time of occurrence and the second one the element of the variable (X1 or
X,).

For that case, the dominant constraint is covariance since

c (0) = cov(X,,X,)
xl,x2 1°72
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and A matrix becomes diagonal with AO significant. The pdf for maximum
entropy is again (53), while AO is shown to be equal (Appendix A).

1
A= — (63)
0 cos(Xl,Xz)

Occurrence of any particular pair of (62), using (53) and (63) is:
(x4q - X)) (x5 - %))
cov(Xl,Xz)

P(xy i%,,) = W’I‘Ti? expl- ] (64)
We emphasize that (64) is obtained assuming independent occurrence of
any pair from (62).

Bivariate random sequence simplifies to the univariate case in the
same manner as for the continuous case.
4.2.3 Multivariate Analysis

This analysis is a discrete analog of Section 4.1.3. We study the
multi-dimensional random sequence X of a number of flood properties,
each property known as the sequence of observations, all with the common
time base. Constraints and assumptions are equivalent to (31) - (33),
but each element or cross-covariance is defined as in (51) for any two
properties i and j (i, = 1, ..., m). The pdf that gives maximum
entropy is of the form as in (36), but now we are able to factor A term
into the products of two vectors. Specifically,
m i
iil Xi Ai jil Xj

1
PRysee k) = gy el ] (65)

where * denotes the transpose of the vector, m is the number of consi-
' *

dered flood properties, Xi,Xj are as defined in (55) for any i,j = 1,

ees» m, and Z(A) can be determined by using the same procedure as for

the bivariate case. Consider for example three flood properties (m =

3). Then from (53)
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1 * *
P(X;,X,,X5) ZUi Ay, 0 SXPL= Xy Ay Xy = X5 B, (%) + X))
*
X3 A3(Xl + X2 + X3)] (66)
For particular triplet in the same time interval (xl,xz,x3) € (Xl,Xz,X3)

and assuming Al,AZ,A3 to be diagonal matrices (AO dominant), (66) can be

simplified to:

( ) -] R
P(X,X,,%X,) = expl- I
1772737 20g102020203 1=1  s?
X
i
_ (x) - %)) (x; - %) _ (x; = x;) (x5 = x3)
cov(Xl,Xz) cov(Xl,X3)
) (x2 - x2) (x3 - x3)] (67
cov(Xz,X3)

This form is convenient for practical applications.

Multivariate random sequence simplifies to bivariate and univariate
cases in the same way as for the continuous case.
4.3 Summary

All derived cases of discrete and continuous analysis are presented
in Table 1. The table shows the similarities and differences for both
cases. Discrete case is easier to use for practical applications since
partition function can easily be derived from the Toeplitz theory. Both
dependencies in space and time are accounted for by taking nonzero
Lagrange multipliers for diagonals surrounding the main one in A matrix
that connects two variables Xi and Xj. When only one variable Xi is
considered, A matrix is limited only to the dependency in time. 1In
examining strongly independent events, for example by taking a suffi-
ciently high threshold value for the floods of partial duration series,

only diagonal A matrices are left easy to use.



26

- [4
vy axe b e m 7 - (veeerefoz
NE
ceeselpy o
uvﬁﬂxuﬁx+anx [ Y (] =v
: (my P s
¥ /i, a Fry e’
(Fe-) =) L3 - A (@) x'(3) X
24 |l 1=V : ( ‘..:.PE&S QJN - Aﬂx 0d = (3)x :18A
. . SNONUTIVOD
(snonuf3ucd) IJUBTIRAOD-SS01D ((1)) b (0) _.,wu 1 ~318]IBATY
o H _
R o T ¢ o]
x-Tx 1 Ty
) X X
- - : =X ° |l =V
[x-Hx) > =2 v (e x-Tx w 1,
‘ X
a, 0" 1 2 . x-0x Ty
[x-*x] 1 == (02 . et _ o oW %
AL . (1-)> - 8 . @' zaen
W)z 232128
(332108Tp) sIdUETIRAODOINE A.Hn&u st (1) (0)° [xv «x ~]dxa <.— = (0)d |oun«~u>«ﬂ“
b -
(v & -1axe Fx p =7y & (e t0OZ .
~ -
r . (wy> 1
(w2 .
uZma?IE : 11 1
) Woceeee U )z 1
- x A 8L | [ v Y)-1dxa - ('x)d
[x-(2)%] T/l | Eﬁ - . 81 l= ¥V 4 1
( N:..f a (€)) . . nuv.«x a8y
S 1 . . 8nonNuUY3Iued
( J3U0D) IDUBTIBACDIOINE (‘m-)2 (fw=)2> 1 =3IBTIRATU])
wopjyemiojul efdueg JUjR1I6U0) UOTIEWAOFU] 3pd sysi1euy

T o198



Lo

27

f-?ﬁ.vnx ﬁmqﬁvﬁx
" . f . T
TSEuﬁEuﬂ . : = X . - X
o * Fe-(0) Fx Fx-(0) Fx
(F=¥) w> (‘751 .
1=f I=F
(SNonuTjuod) SOUBTIBAODOINE . -V Hﬂx 1 .m< ux 1 -]dxe (v)z - a 1
- = .2 w ¥ ow ! (@%@
(F¥T) o> [T>7 x*% ° = (3)X ia1ep
. Wz B eeelyely 9391257p
(232105Tp) IVUPTIRAOI-SS0ID T e o - Tly Tyly [v v -]dxe = (X X 'x)d -33BTIBATITOR
L * ¥ |
L, TEy oL, T
Ll . - . Ll =V
. (F=1) uw>['357 BT, .. 1T L SRR 4 48
_ [A
(SNONUTJIUOD) IDUBFIBAGIOINE )2 *** (‘w=)> tas z
- _ . . “.ﬂ H o ‘AQIOQQ LR N § E‘u.ﬁ< -E<§-0-.H<_ - < AAUVE”.O!O.AUVﬂ”V
- (1) w> 1> 1 *li=""v = (3)x :1ep
. A<~N wm, vessloel SNONUFIUO0D
(239198Tp) PIUBTIBLAOI-EH01D (Cmys -+ (0)> [v v -]dxe T = (% X ud ~31VFARATITOH
~ -
f f
x=-(1) % —
=W . .
W
ety [ O Ty x o0
* 4
ﬁm|AQVHx¢ ™
¥ 1, ] .
T 1 x-(1) x ;
(*x-(1-3)Fx] : - Y
0=3 (0> - (tu-) T ‘
- 0)2 *°* -5 .
@i 7 Bla o s . N Fx-(0)*x 0 Oy ORAOR?
W+l ’ l =V J — - = ()X :aep
. .- Foy ¥ vz (90 ¢ 2331057P
(391D8]pP) BOUBTIRAOI-SSO1D Cmyo *++ (0) 'xv RS -]dxe T " (x*'0d -338FIRATE
wojyemiogu] aypdueg JUTRAJIBUO) UOFIBWIOIUT pd sysiTeUY

1?2147}




28

In addition, three more appendices are added. Appendix B provides
the Levinson-Burg algorithm that can be used for an easy alternative way
to calculate Lagrange multipliers. In Appendix C, it is shown that the
Gumbel distribution is a special consequence of univariate distribution,
assuming annual maximum peaks to be iid. Similarly, Appendix D shows
that the Poisson distribution of the number of flood events in an arbi-

trary interval is also the special case of our univariate distribution.

5. APPLICATION

5.1 Application to Real-World Data

The various components of the model have been tested on two data
sets. Thirty years of daily mean discharges (in period 1956—1985) were
obtained from the U.S. Geological Survey (USGS) for two Louisiana
rivers: Spring Creek and Bayou Bayou. For both rivers low threshold
value was chosen (100 cfs for Spring Creek and 80 cfs for Bayou Bayou)
so that in every year at least one flood was available. In this way,
the model performance can be evaluated more thoroughly. For Spring
Creek, multiple peak hydrographs appeared often, but in total there were
only 28 peaks more than volumes or approximately one more per hydrolo-
gical year. Solutions for both multiple and single peak hydrographs
were tested with only slight difference (Al that appeared in A matrix
still was much smaller in magnitude than AO). Further, we used only
single peak hydrographs, taking only the maximum peak when multiple
hydrographs did occur.

The frequency histograms of peaks, volumes and durations are
presented in figures 1-3 for Spring Creek, and in figures 8-10 for Bayou
Bayou. Flood peaks, volumes and durations may all be represented by

either exponential or Gaussian distribution, taking either the mean
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Histogram of flood peaks for Spring Creek
(Louisiana) for the period 1956-1985.
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Histogram of flood durations for Spring Creek
(Louisiana) for the period 1956-1985.
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Figure 8. Histogram of flood peaks for Bayou Bayou
(Louisiana) for the period 1956-1985.
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Figure 9. Histogram of flood volumes for Bayou Bayou
(Louisiana) for the period 1956-1985.
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(Louisiana) for the period 1956-1985.
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and/or the variance as the information available from data, and using
simple univariate models of (48) or (49). For Sfring Creek, both possi-
bilities were tested for distributions of peaks (figure 4) and volumes
(figure 5), while exponential distribution of (49) was used for flood
durations (figure 7). Both tests showed that prediction was much better
with mean than with variance. Exponential distribution using mean as
the information was fitted to peaks, volumes and durations in

figures 11-13 for Bayou Bayou river.

Further, we tested the bivariate distribution of (64) for flood
peaks and volumes, and the trivariate distribution of (67) for peaks,
volumes and durations. To that end, we improved prediction of volumes
using information on peaks. Let X and Y be random variables of peak and

volume, respectively. Then

. P&V
p(¥I0) = Bgs (68)

using (64) for p(X,Y) and (49) for p(X). Results are presented in
figure 6 for Spring Creek and in figure 12 for Bayou Bayou. Similarly,

let Z be a random variable of flood duration. Using Bayes' formula:

- P(X,Y,2)
p(z[x,7) = E2s (69)

with (67) for trivariate pdf and (65) for the bivariate case, results
are presented in figure 7 for Spring Creek and in figure 13 for Bayou
Bayou.

In these applications, we deal with only one Lagrange multiplier,
taking independency of flood occurrences. This aséumption was not made
in advance. Using the Levinson-Burg algorithm, A's were obtained for
all lags and 10 was 10 times higher in magnitude than the nearest one

(Xl). Since A in the model is responsible for the information intro-
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duced, it is concluded that the most significant information is intro-
duced at lag 0. (The next significant lag was only 18 showing sea-
sonality of flood occurrences.) For example for Spring Creek:

Ao (peaks) = 1.21 >> Mg (peaks) = 0.19 _

AO (volumes) = 1.38 >> A18 (volumes) = 0.12
5.2 Discussion

Results of figures 6, 7, 12 and 13 showed that both bivariate and
trivariate distributions considerably improved prediction of one
univariate flood property (e.g., volumes, durations, etc.). We did not
have to assume any arbitrary shape of the flood hydrograph. Although
Bayes' formula as used, entropy served primarily to transfer the
knowledge from one flood property to another. In this transfer, the
relationship with another variable both through space and time was

accounted for.

6. CONCLUSIONS

The most important features of the model are: (1) The most general
entropy model is drived for flood prediction. Given certain informa-
tion, it specializes in most of the existing models: exponential dis-
tribution for flood peaks of partial duration series, Gumbel distribu-
tion for annual series, etc. (2) Both continuous and discrete analyses
of the model are performed. Discrete analysis is shown to be easier for
the application purposes. (3) The model accounts for the transfer of
information through space and time. (4) The model is not confined to
1id assumption; both dependent and independent flood occurrences can
be treated. (5) Multivariate model can be used to improve prediction of

a single flood property through the use of Bayes' formula. (6) Struc-
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ture of Lagrange multipliers: Av (vector) in the continuous analysis
and AM (matrix) in the discrete analysis prove to be important factors
in studying space and time dependency. Each new A-diagonal is respon- -
sible for new information introduced with a new lag. (7) The model
shows sufficient flexibility, since under certain assumptions, it

reduces to simpler forms easily applicable in practice.
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APPENDIX A

By working out a couple of simple examples, we illustrate the
importance of the Lagrange multipliers.

For k = 0, using (61b),

0 2T 0 AO 27 AO
which yields

AO = 1/c0 (A-1)
or using (6la):

o 9 ° T+1

cn==2—1InZ=-o— In|A| = = &=— 1n A

0 ] 0 BXO BAO 0

0 T+1 AO AO

which again yields (A-1).

For k = 1,

c = f21r do

0" 0 X, F X exp(10)
c. = 1 f2n exp(16)d6

1 0 Xo+ X exp(i0)

Using substitutions: 2z = exp(i6) and dz = d6i exp(i6)

€ ~ 2n1x 2 |=1 z[z—(—d: 1293 Zﬂik f|z|=l ET%§E;7
0°71 1 0
€17 2nix |z|=1 zf:
1 0
where zy = - AO/AI. The first equation can be solved by the residue

theorem, while the second equation by Cauchy integral formula yields:

€ = Zwikl 21if{f(z = 20)]. where £(z) = 1
1 1
c. = — 1 —
1 11 Al
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Al = l/c1 (A-2)
For k = 2, sample autocovariances are given as:

S N
0" T, Y

and

The Lagrange multipliers are then determined from

€ = %? fgw A A ex (1g§+x vl o T
ot?; exp 2 exp (218) 2nik2 'lzl 1 (z zl)(z 22)z
e, = %; fg“ — exexp(ie)de I | fors - dz -
ot?y p(ie)+>\2 exp(216) ZﬂiAZ lz| 1 (z zl)(z zz)
c. = 1 IZW exp(216)d9 -1 s zdz
2 2r°0 A0+Al exp(ie)+12 exp(2i0) Znikz |z|=1 (z-zl)(z—zz)

Solving the last equation:

c, = (1/k2) [Res(z = zl) + Res(z = 22)]

z
1
Res(z = z,) = 1lim [(z-2z.) z ] =
1 Z+21 1 (z—zl)(z-zz) z,-2,
z z1
Res(z = z,) = lim [(z-z,) — ] =—=
2 z+22 2 (z—zl)(z zz) z,-2
Thus,
c|=1_.[zl 22]31—
2 Az zl—22 22 z1 Xz
Ay = llc2 : (A-3)

A similar derivation for cy» cl, Cys c3 yields:
13 - 1/c3
or in general the last Lagrange multiplier of the model will always be

as:



M = 1/, | (a-4)

An exact theoretical proof can be shown by mathematical induction.
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APPENDIX B

Levinson-Burg Algorithm for Solution of the Toeplitz Matrix

Given the matrix equation of either autocovariances ¢, or autocor-

relation coefficients r, :

_. k - - _ - -
I, g oo LI 1 Pm-l
T r . b 0
A0 ) JE T R (8-1)
L] r-l . .
by .« . f T b 0
| m-l 1 0 | [ mlj | J

where P is a constant. For known values of r, and P s b are

m-1 k m-1l" m
solved as a system of m equations with m unknowns. To initiate the
algorithm we start with m = 1. Then L Po and bo = 1. Every higher m
(> 2) system is solved by using the solution of previous one with lower

m. In general, the system (m+l)x(m+l) will be solved from (B-i) as:

- -
ro r_1 « e v e r_m 1l 0
c
T T Tiem by b1
. . = . + c .
m .
L] L ] L ] L] c
Tn-1 ‘ m-1 b1
L rm e e o o o o o o ro 0 1
[~ ,C
Pm—l Am
0 0
= . + c . (B-2)
0 0
Am Pm-l

In the original algorithm b; are the comsiex conjugates ;f bm’ but for

the real hydrologic values b: = bm' From (B-2),



m~-1
b = I r b
m o ®™nom
A (B-3)
m
and ¢ = - ——
m Pm—l
The matrix of (wtl)x(m+l) system will have the following coefficients:
e 'T and - r- -
1 1 0
2 by Pu-1
. = . + c .
m
8n-1 bm—l b1
t-am ] L0 _ | o
and
a_ = bs + ¢ s (B-4)

New constant P_is solved by using P and c_:
m m-1 m

2
Bp=PB 5 (- le |9 (8-5)
Thus, the new system of (mt+l)x(mtl) is defined as:
Tg o« o o T 1 Pm
L I ) L?m 4 L—0 _

Equation (B-6) is the starting point in solving (m+2)x(m+2) system of
equations, after substitution bk = a and Pm-l = Pm'
We offer an alternate way to compute Lagrange multipliers.

Transforming (61b) as:

1 27 _exp(ik6) 46 S zk_1 dz (B-7)
27 "0 T, 211 |z|=1 +u, N
) A exp (1k0) T® A, z
k k
k=-m2 k=-m2

52

where z is variable in the complex plane. The denominator in (B-7) can

be expressed as the product of two polynomials such that the roots of
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the first lie outside the unit circle and the roots of the second inside

the unit circle:

+mf m m
52 M X = %— ( £2 7, 25 ( 52 e ) (B-8)
k=-m2 m k=0 k=0

where P is a positive constant as defined in (B-5), a, and a; are
m
coefficients defined in (B-4) where superscript signifies the conjugate.
c
Note that a, = 1 and a = a. for real values. After determining a, and
Pm from (B-4) to (B-6), Lagrange multipliers are obtained from (B-8) by
equating the terms of equal powers:

m2-j
a; + kil & 841
A = A = (B-g)
-3 7% P_
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APPENDIX C

Derivation of the Gumbel Distribution for Annual Flood Series

We derive the Gumbel distribution using the assumption that the
maximum term in a sequence of i.i.d. variables with a common distribu-
tion function has an exponential tail. We show that this distribution

is a special case of the proposed model. Information is given as:
o0
g = Elexp(-x)] = J__ exp(-x) p(x)dx (C-1)

and determined from the sample estimate:

T
exp(-x,) + exp(-x,) + ... + exp(-x,) z exp(-xi)

_ 1 2 70 _ 1=1 (c-2)

&1 T T
Under the i.i.d. assumption, the POME distribution is

p(x) = 3 expl- 2, A] | (c-3)

i Z 171

T
Let A, =T I x,. Then
1 i=1 i
1 n
p(x,) = Z00 exp[- A 121 exp(-x,)] (C-4)
n
where Z()) is determined from I p(xi) = ] as:
i=]
n
Z(\) = I exp(-Ain) (c-5)
i=1
=4 1

pX) = -Z—(K)exp[-XA o 1%] (C-6)

where X = [exp(-xl), csey exp(-xT)] is row-vector of annual flood peak
exponentials, A is diagonal matrix with the unique A on diagonal and
l1=(1, «c., 1). Z(A) is as defined in (C-5). A is determined numeri-

cally from:



)
vy In 2 g4

which yields:

T
T
exp(—xzxi) =7
I exp(-xi)
i=1

(c-7)

(C-8)
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APPENDIX D

Entropy Representation of the Poisson Process

Consider the number of the flood occurrences N(t) to be a random
variable. The information needed as the input to the entropy model is
g = N(t) which is the average number of occurrences in internal (0,T),
e.g., one year. Thus, this derivation is possible only in partial
duration-series approach where more than one occurrence is treated in
one year interval.

From the POME algorithm:

pIN(t) = ni] = Z%A) exp(-lni)

where

In Z(A) = 1n A

Z()) = - N(¢v)
and
A‘;_———
N(t)
Thus,
oy
p(n,) = = exp (- ——)
N(t) N(t)

(D-1)
or pX) = A exp(-ix)

The maximum entropy distribution of the number of occurrences is
exponential distribution.

From the probability theory, if the random variable Xi is asso-
ciated with the time interval Ty from some fixed origin t = 0 to the
subsequent point:

p(1) = A exp(-A1y)
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then the times of peak occurrences 11,11+12, ees, are all exponentially

distributed with parameter ).

The N-th point occurs at the time

T = %

T
b o 1=1 i

and it follows that r-distribution:

r-1
P(X':Tr) = )\()\T)(r-l)?xp ("AT) (D_z)

The number of points in time interval Tr: N(Tr) has Poisson

distribution with mean X(O T )" Write
»
r

r-1l
P{N(t) < r} = P{X1 + 0. + Xr >t} = f: A(AU)(r_liTp(-ku) du

By repeated partial integration, we obtain:

P{N(t) < r} = sio ggp(—gf) (t)
or
T
P{N(t) = r} = exp(-at) (At) -3

r!
(D-3) is the Poisson distribution that is seen as special case of the
exponential distribution considering any number of events occurring in
an arbitrary time interval (0,t). In conclusion, A = 1/N(t), and the

pdf that gives maximum entropy is:

N = T
P(N(t) = r} = gzp[-t/N(;i} [e/N(t)]

(D-4)



