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ABSTRACT

Treating rainfall as a random field, models are derived using
entropy for design of rainfall networks in space and time separately and
jointly. The model for design in space offers an alternative to the
model of Rodriguez-Iturbe and Mejia (1974). The model for design in
time is extended using entropy spectrum for reconstruction of historical
rainfall data. Long-term annual rainfall data for existing networks in
Louisiana are used to verify the models. The efficiency of rainfall
networks is evaluated using reduction of variance of mean areal rain-
fall. A comparison with some of the existing models shows that the

proposed models are suitable, especially for data-scarce regionms.

vii /



1. INTRODUCTION

Rainfall of an area is usually measured by a network of raingages.
This network should be designed such thaf space-time variability of
rainfall is sampled optimally. The network aesign has two modes:

&) nhmber of raingages and positions for their installment (space
design); and (2) time interval for measurement (or sampling interval)
for each raingage and duration of the measurement program (time design).
The information in one mode may be supplemented by the other with appro-
priate transfer mechanisms and by cross-correlation structure (space-
time trade-off). Space-time design of rainfall networks should not be
considered as a finished product, but should be updated periodically.

A design of rainfall network should consider the nature of the
rainfall process to be sampled, and worth-of rainfall data to be
obtained. The latter aspect has been helpful in historical development
of network design. The worth is difficult to measure and is usually
described by some other surrogates. An overview of studies on this
aspect is given by Dawdy (1979). Langbein (1954) was probably the first
to suggest the need to measure the worth of data. He proposed four
ways for network design: (1) Use of statisfical analysis and accuracy
criteria as a measure of information. (2) Space-time trade-off.

(3) Sample error as a major source of error in network design. (4) The
influence of time dependency on the length of rainfall record.

Two approaches, employed for rainfall network design, have been:
(1) information-variance, and ¢2) transfer function variance. Both
approaches aim to satisfy the standard error or mean squared error (mse)
criterion. For purposes of illustration, consider an observed rainfall

time series to be described by some statistical parameters such as



means, variances, correlations and cross-correlations. However, it is
not known in advance which parameters are known (first error) and what
their values (second error) are. Since the observed time series is of
finite length, only estimates of the parameter values can be obtained.
The difference between the mean of that estiméte and its true value is
the error which is usually measured by variance or second moment of the
estimated parameter value. The latter is also known as the mean squared
error (mse) and is defined as:

2
mse = E[xOt - i LA xit] (1.1)

where X0 is the unknown rainfall record at location O and time t and is
estimated by weighting all known rainfall records at locations i each
with some factor LT "E" denotes the expectation.

Information-variance may involve space-time trade-off explicitly.
The decision whether to continue or discontinue a raingage is based on
the relative gain of information. A network is designed by performing
space and time analyses with some common measure of information. This
idea, originated by Langbein (1954), was further extended by Rodriguez-
Iturbe and Mejia (1974), and Lenton and Rodriguez-Iturbe (1977) using
mathematical programming techniques. Another measure of information is
cross—correlation transfer because rainfall series at different sites
may be cross-correlated. Information about the rainfall amount at omne
site is transferable to another site (Fiering, 1965; Thomas and Benson,
1970). This has led to the concept of regional rainfall which has been
used to evaluate the need for additional data collection both at gaged
and ungaged sites (Matalas and Gilroy, 1968). The economic worth of

data, together with rainfall information, has been used for design of



economically efficient networks (Dawdy, et al., 1970; Moss, 1970; Moss
and Dawdy, 1971).

Investigations using transfer function-variance employ spectral
density function (spf). This function measures the distribution of the
variance of rainfall occurrences over the range of frequencies inherent
in their occurrences. A higher spf produces greater contribution to the
variance. Eagleson (1967) used the spatial spf (transform of correlation-
distance function) to determine optimal distances among raingages. An
advantage of using transfer-function variance is that it reduces all the
information concerning space-time dependence to a functional form. Some
studies have been directed at the economic worth of data (Klemes, 1977;
Slack, et al., 1975), decision theory and Bayesian analysis in rainfall
network design (Duckstein, et al., 1974).

The objective of this study is to develop an approach based on
entropy for space-time design of rainfall networks. Both variance and
entropy are used as measures of information. Economic worth of data and
Bayesian analysis are not considered. Designs in space and time are

treated first separately, and then with the space~time trade-off.

2, MEASURES OF INFORMATION

2.1 VARIANCE AS A MEASURE OF NETWORK EFFICIENCY

The idea here is to position raingages at specified locations in
space and use their measurements to estimate the mean rainfall depth
over the area. The squared error of this estimate is the variance which
decreases with increasing number of raingages. For a fixed raingage in
time, variance measures the deviation of rainfall depth from time-
averaged rainfall depth at that station, and decreases with increasing

length of record.



Let X be rainfall depth at raingage i for time t, N total number
of raingages and T length of record. Then, the space-time mean rainfall
depth can be defined as:

T

I x (2.1)

T -
1¢=1 It

o=z

L
NT |

for all raingages in the study area and for all available records. The
space-time variance of the rainfall record can be defined as:
T

I (x
1 t=1

s” = &
NT |

X 1

-2 (2.2)

n ™=z

it

Assuming weak stationarity for the rainfall process, the mean rainfall
depth R can be obtained from (2.1). Then, the variance of the mean
rainfall R as a measure of the network efficiency is:

N T

var(R) = var[%f X I x
i=1 t=1

1e] (2.3)
2,2 ENTROPY AS A MEASURE OF INFORMATION

Entropy is defined as expectation of information (Shannon, 1948).
If X is a random variable and Xl’ X2, cees Xn (with n = number of
observations) are possible realizations of that random variable with

occurrence probability Py> k=1, 2, ..., n, then the entropy H of X is:

n
HX) = - I Py log(pk) (2.4)

=1
Entropy measures the uncertainty associated with realization of X. If
the realization of X is certain, then one of the probabilities Py will
be one and all others will be zero, and the entropy will then be zero as
its minimum. With rising uncertainty about the realizations of X,
entropy rises and achieves its maximum at log n. If entropy is

maximized subject to the constraints based on prior knowledge, then the



probability distribution corresponding to these will be least biased and
consistent with respect to the constraints (Jaynés, 1978). This
principle of maximum entropy (POME) has been successfully used in many
scientific fields including hydrology (Sonuga, 1972, 1976; Amorocho and
Espildora, 1973; Harmancioglu, 1980; Singh and Krstanovic, 1985; Singh,
et al., 1985, 1986), but does not appear to have been applied to
rainfall network design.

If X1 and X2 are two random variables whose joint probability of

occurrence is p, ., 1 =1, ..., n,, 1 =1, ..., n,, then the joint
i,j 1 2
entropy of Xl and X2 is:
pn R
H(X,,X,)) = - = I p, . log(p, .) (2.5)
172 i=1 j=1 +»d 1.3

Similarly, the conditional entropy of Xl’ given Xz, is:
n, n,
H(X1|X2) = - ifl jzl Py, 1og(pi|j) (2.6)
where pilj is conditional probability of Xl’ given XZ' Both joint and

conditional entropies are similarly defined for m different random

variables:
H(Xl’ ey Xm) = - i oo i pi,j,...,m log(pi,j’...’m) (2.7)
H(Xllxz, cees Xm) = - f - é Pi,..om log (Pi|j,...,m) (2.8)
where pi,j,...,m and Pilj,...,m are respectively joint probability of

Xl’ XZ’ ceey Xm and conditional probability of Xl’ given XZ’ ey Xm.
1f Xl’ X2, ooy Xm, are stochastically independent random
variables, then their joint entropy is the sum of marginal entropies:
m

H(Xl’ Xps eees Xm) = 151 H(Xi) (2.9)



If there exists dependence among the variables then the joint entropy is
equal to the sum of the marginal entropy of one of the variables and
conditional entropies of other variables as:

m

H(X;s Xyp eees X)) = H(X)) + ifz H(X, Ix

s e XD (2.10)

Equation (2.10) gives the distribution of uncertainties among variables:
the first term on the right side of the equation represents the uncer-
tainty associated with realization of the variable Xl’ the next term
represents reduction in uncertainty of realization of Xl by knowledge of
Xz, X3, etc. Joint and conditional entropies have been used by

Harmancioglu (1980) in examining water pollution data.

3. DESIGN CONSIDERATIONS
.3.1 RAINFALL DATA
There are nearly 100 raingages currently operating in the State of

Louisiana, of which 76 were chosen with records longer than 15 years.
Each raingage is located in one of the nine subregions of Louisiana
which were demarcated by the U.S. National Weather Service in the
1950's. Each subregion supposedly represents the area of similar
climatological characteristics. The abbreviations used to represent the
subregions are: NW (northwest), NC (north central), NE (northeast), WC
(west central), C (central), EC (east central), SW (southwest), SC
(south central), SE (southeast). The raingages used are given in
Table 1. Annual rainfall depth observed by each gage was used for

analysis.



Table 1. The raingages used in the study.

Climatic Zones

(Subregions) Raingages

Northwest Cotton Valley, Hosston, Minden, Plain Dealing,
Rodessa, Shreveport WB Airport, Springhill

North Central Calhan Exp. Station, Homer Exp. Station, Monroe FAA
Airport, Ruston LA Polytech. Inst., Spearsville Fire
Tower, Sterlington Look, Winfield 2W, Winona Fire
Tower

Northeast Bastrop, Epps 6W, Lake Providence, Saint Joseph Exp.
Station, Winsboro

West Central Ashland 2S, Converse, Grand Ecore, Hodges Gardens,
Leesville, Many, Natchitoches

Central Alexandria, Belah Fire Tower, Burkie, Grant Coteau,
Marksville, Melville, 0l1d River Lock, Opelousas,
Simmesport, Vidalia No. 2

East Central Amite, Baton Rouge WB Airport, Bogalusa, Covington
4NNW, Franklinton 3SW, Greenvell Springs, Hammond
3NW, Pearl River Lock No. 1, Pine Grove Fire Tower,
Oaknolia, Sheridan Fire Tower, Slidell, Springville
Fire Tower

Southwest Crowley Exp. Station, DeQuincy 4N, DeRidder,
Elizabeth, Hackberry 8SSW, Jennings, Kinder 3W, Lake
Charles WB Airport, Longville, Mermentau, Oakdale,
Oberlin Fire Tower, Rockfeller W1 Refuge, Vermilion
Lock

South Central Camille 2SW, Franmklin 3NW, Jeanerette Exp. Station,
Lafayette FAA Airport, Morgan City, New Iberia 5NW

South East Donaldsonville 3E, Houma 1SW, New Orleans Algiers,
Paradis 7S5, Reserve, Saint Bernard.

3.2 MODES OF DESIGN

Three modes of design are considered: (1) Design in space, deter-
mining the sufficiency of the existing raingages and sampling distance.
(2) Design in time, determining sampling time interval by examining

dependence structure of raingage records and the spectral density



function. (3) Design in space and time determining space-time trade-off
by examining reduction of space-time variance and distribution of
uncertainties among raingages by means of their marginal and conditional
entropies. This procedure leads to an alternative to the space-time
design model of Rodriguez-Iturbe and Mejia (1574).

The assumptions made for all three modes are: (a) the rainfall
process is random in time and space; (b) long-term space-time mean of
the rainfall depth is constant; and (c) variance is separable in both

space and time.

3.3 SPACE-TIME VARTANCE
The variance of the mean rainfall from (2.3) is
N T

X I (x
i=1 t=1

1

var(®) = EIR - E®1% = El}:

= .2
it) - E(R)] (3.1)

This variance can be expressed as the product of the space-time variance
of the rainfall record, and the temporal and spatial reduction factors
F(T) and G(N) dependent only on sampling in time and space respectively
(Rodriguez~-Iturbe and Mejia, 1974) as:

= _ 2
var(R) = q,

« F(T) + G(N) (3.2)
Consequently, sampling in space and in time can be treated separately.

The factor G(N) is derived by Rodriguez-Iturbe and Mejia (1974) as:
¢ = () N + N(N-1) Elr(@)]} (3.3)
N

where d is the distance between raingages and r(d) is the spatial
correlation function. The form of F(T) depends on the order of

autocorrelation function.



3.4 DETERMINATION OF CORRELATION FUNCTION

To determine correlation between raingages in Louisiana, one cen-
tral raingage was chosen in each subregion, and correlations between the
residuals of rainfall depths of that raingage and every other raingage
were determined in terms of lag-zero cross-correlation coefficient. Let
the subscripts i and c denote an i-th raingage and the central raingage
respectively. The variable Xt denotes the rainfall depth of i~th rain-
gage and time t, and T represents the length of record of the raingage

i. Then, lag~zero cross-correlation coefficient is:

Yx, - %,.)

T —
E (xct - Xct it it

(3.4)
2

1 t

- 2.1/2
(rjp = %5071

I 3

1

Values of cross-correlations are plotted as isocorrelation lines around
each central raingage as shown in figure 1. The subregions NW, NC, NE
were highly correlated since each was inside 0.90 isocorrelation line.
The subregions with relatively weak correlation structure were SW, C and
SC (the boundary was 0.6 isocorrelation line). A wider range of corre-
lations was obpained when the whole of Louisiana was considered as one
area. Correlations of selected raingages which are farthest apart and

all other (75) raingages are shown as points in figure 2.

4. DESIGN IN SPACE
4.1 DERIVATION OF SPATIAL REDUCTION FACTOR
It is assumed that raingages can be located randomly. Let d be the
distance between raingages, d mean distance, and og variance of
distances. The probability density function (pdf) of distances, derived

using POME as a normal distribution in Appendix A, can be rewritten as:
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2
1 (d-d)
p(d) = exp[- ] (4.1)
[21(o5)1%7 207

In other words, spatial sampling follows a normal probability distri-
bution.

The spatial correlation function r(d), treated as a pdf derived
using POME as an exponential distribution in Appendix B, can be written

as:

r(d) =

% exp(- d/d) (4.2)

d
This form must be modified by the factor of proportionality k = d, since

at zero distance r(d=0) = 1,

r(d) = exp(- d/d) (4.3)

A plot of correlation function r(d) for some selected Louisiana
raingages is shown in figure 2. For d between 220 and 300 miles, r(d)
became negligible. Equation (4.3) is a special case of:

r(d) = exp(- d/bd) (4.4)
where b is dispersion factor. From figure 2, b appeared to be in the
range (1,1.5). For b > 1, r(d) diminished with d at a much slower rate.
For Louisiana, b = 1 (obtained using entropy) was more realistic.

The mean of the spatial correlation for a given area is:
r
E[r(d) [A] = 7" r(d) g(r(d)) dr (4.5)

where T ax is the maximum spatial correlation for area A. Rodriguez-

Iturbe and Mejia (1974) expressed (4.5) as
r
E[r(d) [A] = /" r(d) £(4) dd (4.6)

where dmax is the maximum distance among two raingages in area A and
f(d) is the frequency function of the distance d between any two

randomly chosen raingages. The frequency function can be expressed by
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p(d) given in (4.1), and r(d) given in (4.4). Since the left side of
(4.6) does not include area explicitly, one can write:

(a-3)°

Blr(@)] = [P 1 exp[- & -
0.5 d 202

——4—] dd 4.7)
RN LICAY

Using the notations ll = 1/d and 12 = 1/202, and integrating on the

whole probability space (-=%,4%):

E[r(d)] = £ expl- Ad - A (a-8)°] ad (4.8)

[2m(e2)1%"

Using the formula (3.322) given in Gradshtein and Rhyzhik (1980), (4.8)

can be solved as:

32 i 1 32 2
E[r(d)] = exp{[- ———] 5 G5t = - —5)}
20 d Gd O‘d
g -
d d
* [1 - ¢« - )]
,0.5 7 7 ,0.5 o)

where ¢(.) is the error function. A simplification of this equation
expresses mean of the spatial correlation only as a function of c, or

coefficient of variation (cv = 0&/3) as:

c2 c2-1
E[r(d)] = exp(z~ = 1) * [1 - d(5z—)] | (4.9)
277 ¢
v

By inserting (3.9) in (2.3), the spatial reduction factor is

obtained as:
2
Cy

1 c2-1
G(N) = —7 N + N(N-1) exp(—— - 1) [1 - ¢(

20 .5
‘v

11} (4.10)

This gives the reduction in variance due to sampling in space. Equation
(4.10) was plotted for various values of c, while keeping N constant.

For c, > 5.6, G(N) became constant regardless of N as shown in figures 3
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and 4. The realistic range of c, is (0.1, 5.6), covering virtually all
meaningful values of means and variances of distances. Some values of
G(N) for various values of c, and N are given in Table 2.

Table 2. Spatial reduction factor for various values of

the coefficient of variation (cv) and the
number of stations (N).

N 9 18 27 36 45

‘v

0.5 0.805 0.79 0.785 0.73 0.71
0.6 0.785 0.77 0.76 0.758 0.756
0.7 0.75 0.74 0.73 0.725 0.72
0.8 0.72 0.70 0.695 0.69 0.688
0.9 0.685 0.668 0.656 0.654 0.650
1.0 0.655 0.630 0.620 0.615 0.611

4.2 COMPUTATION OF VARIANCE REDUCTION

For known distances among raingages, sample estimates of d, 02,
and c, were calculated. Then, G(N) was obtained by decreasing or
increasing the number of raingages. When c, was greater, which was for
greater variance of the distances, a greater range of reduction was
obtained. For a greater combination of possible distances, e.g., for
Louisiana {72}, a simplified procedure was applied to expedite calcula-
tions. This procedure is a consequence of simple random sampling
(Cochran, 1977). For nine subregions of Louisiana, one raingage was

selected in each subregion; then all possible distances (9 x 75) with

respect to these nine points were measured. For every sample of
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distances, its d and oﬁ were estimated. The sample mean of all possible

distances is an unbiased estimate of the real mean:
9 2
T 4 (4.11)

where d is the estimate of d for the entire State of Louisiana and ai is
estimate of d for the subregion i. Similarly, the variance for the

entire State of Louisiana 82 was computed as

d
9
i=1
in which Sg(i) is the variance estimated for the subregion i. Sﬁ is an
estimate of oi. This variance should be corrected by finite population
correction (9/76) as:
2 52
Sd = Sd(l - 9/76) (4.12)

The values of mean and variance for Louisiana were found to be: d =

127.50 miles; 2 4,362 milesz; and c, = 0.52.

54
For any subregion with 9 raingages, the value of N can be deter-
mined from figures 3 and 4. For example, for central subregion, d =

41 miles, Sd = 17.8 miles, and c, = 0.43, the variance reduction factor

was G(N) = 0.81.

4,3 COMPUTATION OF ENTROPY
Entropy was computed for the random sampling of distances in
Louisiana, considering one or more raingages per subregion. The entropy

of (4.1) is equivalent to the one of the normal distribution function

(Singh, et al., 1985):

H(X=d) = % In | sﬁ (27e) ] (4.13)
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The entropy H(X=d) measures the uncertainty of sampling distances
among the available raingages. Nine Louisiana raingages or one raingage
in each subregion have the entropy H(dl). When the number of raingages
is increased, the sampling variation grows. For 2 raingages in each
subregion, we have entropy H(dl,dz). The remaining uncertainty is
H(dlldz) and is computed from (2.10). The uncertainty is decreased by
further increasing the number of raingages. The remaining uncertainty
is always equal to the difference among the successive joint entropies.
The results are presented in Table 3. The most significant entropy
reduction occurred when the number of raingages increased from one to
two in each subregion or from 9 to 18 for the entire State of Louisiana.

Table 3. Entropy (napiers) matrix for space design with the distance
among the raingages as the random variable.

Distance Statistics
Number Of  1oa1 Number Entropy  Conditional
per Subregion of Stations d [napiers] [napiers]

S
[miles] [miies]

1 9 130 53.44 5.40 5.40
2 18 136 56.88 5.47 0.07
3 27 147 62.00 5.54 0.07
4 36 150 66.00 5.60 0.06

5. DESIGN IN TIME
5.1 CORRELATION STRUCTURE OF RAINFALL TIME SERIES
The autocovariance functions Cp» derived in Appendix C, for the

time series of rainfall depth can be written as:
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1 f2v _exp(ike)de

% = 37 ‘o = (5.1)
I A, exp(ij®)

j=0

where m is the number of constraints and Ak the Lagrange multipliers of

the entropy method. In (0,m) interval, values of c, are determined

from known data; for k >m, ¢, is determined from (4.1). By using all

k

ck's (from 0 to the last known lag of the historical record), one may

‘reconstruct original record of the rainfall depths.

It is important to enumerate the significance of the Lagrange
multipliers kk. In Appendix C, it is proved that each new Ak is equal
to the inverse of the autocovariance at that lag:

Ak = 1/ck (5.2)
Its role is analogous to the role of partial autocorrelation function
¢kk in time series analysis. While ¢kk denotes correlation introduced
at lag k not accounted for by previous k-1 lags, Ak denotes information
introduced at lag k not accounted for by k-1 previous lags. For
example, elements of the Toeplitz matrix in (C-5) are explained as: Ao
on the main diagonal represents information introduced by the variance,
Xl represents information introduced by autocovariance of lag one, and

%m represents information introduced by autocovariance of lag m. All

other Ak's (k > m) are redundant and do not bring new knowledge.

5.2 TESTING DEPENDENCY OF RAINFALL RECORDS

The annual rainfall time series of each raingage was tested for
independence using autocorrelation function expressed as:

T-k _ _
I (x, - x)(x - x)

~ t t+k

r, = t=1 (5.3)

(x, - 07

]

t=1
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A plot of Ty for some selected raingages is shown in figure 5. The 95%
confidence limits, given by Anderson (1941), are very far indicating

that the rainfall series is highly independent.

5.3 EVALUATION OF DEPENDENCY ORDER

The Lagrange multipliers Ak were calculated to see how much infor-
mation was introduced at different lags. Except for AO’ of particular
interest are Xl and 12, representing lag-one and lag-two dependency,
respectively. For the 9 Louisiana subregions, all new Ak's were calcu~
lated for autocorrelation of areal mean values and plotted against the
lag k as shown in figure 6. This illustration is only approximate,
since in theoretical derivation of (C-4), the time base is assumed
infinitely long, whereas the data is available for only 15 years. The
Al was dominant for 6 regions of higher correlations and introduction of
new Ak's produced redundant knowledge. For the regions of weak correla-
tions (SC, C, SW), AZ was more important. To get valid approximation
for more lags, every raingage should be considered ;eparately and its
records extended by double-mass curve or some other techniques. This
was done for one of the raingages (figure 7) where the records were
extended 35 years in the past giving the total time base of 50 years.

New calculations again showed strong dominance of Al'

5.4 EVALUATION OF TEMPORAL VARIANCE REDUCTION FACTOR
On the average, use of first-order dependency was considered
sufficient for all Louisiana raingages. This points out adequacy of

using Cy OF Ty of lag one. Using Is the variance reduction factor F(T)

was derived by Rodriguez~Iturbe and Mejia (1974) as:
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ORDER OF THE MODEL K
(=TIME LAG IN YEARS)

Figure 6. Relation between the Lagrange multipliers
of the entropy model and the order of the

time series model for the nine subregions
in Louisiana.
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F(T) was plotted for various values of r1 and T as shown in figure 8 .

[T-1-

F(T) = -1-2- (T + 2 a - r’{“l)]} (5.4)
T

The value of r, was obtained as 0, which was somewhat expected according
to the very low value of r; from the correlogram of figure 5. This
confirms that the rainfall in any year does not depend on the previous

year rainfall,

5.5 CALCULATION OF ENTROPY SPECTRA
Having determined all the Lagrange multipliers for a certain number

of lags (e.g., k = 10 =+ A_, Al, Az, oo AlO = 11 multipliers), one can

determine the power spectrum since it is related to C by
o+
P(f) = I Cp cos (2mfk) . (5.6)
k=—

for frequency ]fl 2 0.50, or by using (C-13), one can predict entropy
spectrum P(f) as

P(f) = = L , gl <o0.5 (5.7)

z Ak cos (271fk)
k=-m

Equation (5.7) was originally derived by Burg (1975) and then Jaynes
(1982). Because of the summetry of the autocovariance function, (C-13)

can be written as:

o = 1 f2n exp(ikg)de
k 27 °0 +m
hX exp (ik 6)
k=-m Ak
or
k-1
_ 1 z dz _
T f|z[=1 e " s 2 = exp(iH) (5.8)
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Denominator of (5.8) can be expressed as the product of two polynomials
such that the roots of the first polynomial lie outside the unit circle

and the roots of the second polynomial inside the unit circle,

+m m m
z kk zk = %— (Zz a, zk) (Zz ak* z_k) (5.9)
k=-m m k=0 k=0
where Pm is constant >0, and ak*,ak are coefficients. Note that 3, = 1.

In general, ak* is the complex conjugate of a For the real values

k.
a, = ak*, and one can write (5.7) as

p_ P
P(£) = - — —
|2 a =™ [ a cos2m)]? + [ I
k=0 k=0 k=0

a# sin(2ﬂfk)]2
(5.10)

The values of a, were obtained first using the Levinson-Burg
algorithm (Burg, 1975) presented in Appendix D. Then the entropy
spectrum was determined from (5.10). This entropy spectrum was compared
with unsmoothed power spectrum of historical records for each Louisiana
subregion. The unsmoothed power spectrum was computed as:

+m

P(f) =1+2 I ¢
k=1

Kk cos (27fk) (5.11)

As shown in figures 9-15, entropy spectra yielded reasonably
accurate predictions, although their peaks were slightly higher than
those for the original record.

The Lagrange multipliers were determined from (5.9) by equating the
terms of equal powers as:

m

2
AO = (1 + fl ai)/Pm
m- .
Aj = A—j = (aj + E a, ak+l)/Pm (5.12)
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A=A = am/Pm
The value of Ak’ presented in Table 4, produced sharp spectral peaks
only if its magnitude was much higher than its neighboring A's: Ak—l
and Ak+l (e.g., EC, NW, C or SW subdivision). If all high Ak's were
concentrated one after the other, it was difficult to determine the ones
responsible for formation of spectral peaks (e.g., NE, WC or NC sub-
regions).

These spectral peaks show relative contributions to the variance of
mean rainfall. The NC and NE subregions have significant contributions
at frequencies 0.18 and 0.26 which correspond to the period of 5.5 and
3.8 years, the subregion C has significant peak at 0.10 or every tenth
year, and the southern subregions have significant contributions to the
variance at both smaller and higher frequencies.

It is concluded that subregions of higher correlations have one or
two frequencies or periods when significant rainfall depths occur. The

subregions of weaker correlations have more equal distributions of

rainfall depths for most frequencies or periods.

6. SPACE-TIME DESIGN
6.1 TOTAL REDUCTION IN VARIANCE
The total reduction in variance for both space and time was com-

puted as F = G(N) * F(T). The values of G(N) and F(T) were

total

obtained as:

N
(stations) 1 5 10 20 50 100
G(N) 1.0 0.82 0.79 0.785 0.780 0.777
T
(years) 1 5 10 15 20 30 40 50 60 100

F(T) 1 0.2 0.10 0.067 0.05 0.033 0.025 .02 .013 .010
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Table 4. Lagrangian multipliers for 15 lags obtained from (5.12).
Division
Lag k AK
NW NC NE WC c EC SW
0 X 1.87 6.30 4.83 7.96 1.41 1.82 1.82
1 Al -.14 4,44 2,72 5,84 -0.06 0.22 0.37
2 Ay 0.50 4,90 3.64 6.51 -0.33 -0.60 -.13
3 AB 0.28 4.40 2.56 5.41 0.13 0.06 0.049
4 Ay 0.31 3.85 3.20 5.52 0.066 0.76 0.65
5 AS 0.06 3.34 1.95 4,23 0.086 0.25 0.13
6 A6 -0.10 3.00 2.47 4,02 -0.196 -0.28 -0.32
7 A? 0.07 2.27  1.29 2,74 0.020 -0.11 -0.01
8 Ag 0.12 1.96 1.63 2.71 -.033 0.36 0.29
9 Ag -0.12 1.39 0.74 1.61 -0.230 0.24 -0.26
10 Mo 0.26 1.22 1.06 1.53 0.04 -.22 -0.39
11 M1 -0.34 0.59 0.25 0.58 -0.03 -.05 -0.01
12 Ao 0.32 0.50 0.44 0.72 -0.13 -0.105 -0.05
13 113 -0.09 0.57 0.23 0.40 -0.03 -0.103 —Q.lS
14 A14 -.009 -.07 0.15 0.08 0.070 -0.096 -0.13
15 A .005 .23 =,04 0.62 0.076 0.031 -0.03
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For various values of raingages N and years T, Fto is given in

tal
Table 5.

Table 5. Values of total reduction in variance
for various values of N and T.

T
2 5 10 15
N
1 0.50 0.200 0.100 0.067
2 0.44 0.176 0.088 0.0590
3 0.43 0.172 0.086 0.0576
5 0.41 0.164 0.082 0.0549
10 0.395 0.158 0.079 0.0529
20 0.3925 0.157 0.0785 0.0526
100 0.388 0.155 0.078 0.0521

Notations: N = number of raingages
T = number of years

The space~time mean rainfall depth was R = 58.96 inches using
(2.1), and space-time variance of the raingall record was si = 149.80
inches2 using (2.2). Finally, space-time variance of the mean rainfall

was computed using (3.2):

var (R) 149.80 Fto

tal
which gives:

fi

var (R) 8.1 inches2 for 1 raingage/subregion operating 15 years
or

var(R) 7.9 inches2 for 2 raingages/subregion operating 15 years

"

By increasing the number of raingages, the variance reduction was

effective until the density of 1 to 2 raingages per subregion. More
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dense raingages decreased the variance only marginally. This is evident
in the last computation where the precision of only 0.2 inches2 is

achieved by doubling the number of raingages.

6.2 USE OF ENTROPY IN SPACE-TIME DESIGN

Entropy is used here to measure the distribution of uncertainties
associated with measurement of rainfall in all 9 subregions. Let X be a
vector of N variables (Xl, cees XN)’ with each Xi (i1i=1, ..., N) repre-

sented by a time series with a time base of 15 years. Specifically, X1

represents the time series of central raingage for NW subregion, X2 for

NC, X, for NE, X, for WC, X, for C, X, for EC, X, for SW, X, for SC and

3 4 5 6 7

X9 for SE. Using (C-4), entropy of the random vector X is:

8

H(X) = % In 27 - % in |A] + g (6.1)

where IAI is determinant of the matrix of the Lagrange multipliers given
by (C-5). Using similarity between multivariate normal distribution and
(C-4), it is noted that IAI = |Z|_1, where |2| is either autocovariance
matrix (for N = 1 and the entropy H(Xi) of the single variable is cal-
culated) or cross-covariance matrix (when N > 1) with cross-correlation
between related variables Xi inside the random vector X. For space
design, (6.1) was used with N as the number of raingages in the same
subregion. Computations, presented in Table 6, were performed as
follows. First, one raingage in each subregion was chosen (usually
central raingage) and its entropy H(Xl) was computed. Then a new
raingage of the same subregion was added and the joint entropy H(Xl,Xz)
was computed. The relationship between two raingages is given by their
covariance structure represented by A matrix. The conditional entropy

H(Xllxz) represents the amount of uncertainty left in X1 when X2 was
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Table 6. Entropy matrix for space design (entropy [napiers]) with the
rainfall depth as a random variable.

SPACE DESIGN

Subregion H(X,) H(Xllxz) H(X1IX2,X3) H(X1-|X2,X3,X4) H(X1|X2,..,X5)

NW 3.938 3.035 2.592 2.592 2.459
NC 4.059 3,460 2.846 2.775 2.707
NE 4.092 3.216 3.183 3.166 2.904
wC 3.873  3.347 2.689 2.643 2.642
C 3.804  3.352 3.115 3.111 3.068
EC 3.608 3.155 2.969 2.934 2.899
Sw 3.555 3.345 3.273 2,961 2.796
sC 3.723  3.265 3.169 3.065 2.922
SE 3.800 3.395 3.238 2.853 2.850

Notations: H(Xi[X.) = conditional entropy at raingage i given the
raingage j in same subregion.
introduced. It was computed as a difference between the joint and
marginal entropy according to (2.10). This procedure was repeated until
5 raingagesin each subregion were introduced. The most significant
reduction in entropy occurred from one raingage to two raingages per
subregion. Introduction of additional raingages produced negligible
decrease in entropy.

For time design, (6.1) was used again with N = 1. X is now the
rainfall record for selected raingages in each subregion. The results
are presented in Table 7. Several cases were distinguished with
sampling information every year, every second year, and every third

year. Greater sampling intervals were not examined because of the short
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time record. For each case, conditional entropies were computed using
(1.10). Xl now represents the full time series,‘and Xk the series with
lag k-1, Each conditional entropy H(Xllxz, cens Xk) represents the
uncertainty remaining at a specific raingage when the information from k

other lags is known. The relationship among the lags is expressed by

the autocovariance matrix represented by A.

7. DISCUSSION
7.1 DISCUSSION OF RESULTS

From Table 5 it is seen that the influence of F(T) on the total
reduction factor Ftotal was much greater than F*(N). The number of
raingages needed for accurate measurement of long-term areal rainfall in
Louisiana depends on the reduction in variance to be achieved. For
example, for existing 76 raingages operating for 15 years, the reduction
of 5.27% was achieved as shown in Table 5. That is hardly economical
since 5.37 reduction in variance was already achieved by keeping 18
raingages or 2 in each subregion. By further increasing the number of
raingages, one could decrease the reduction by 0.17, which is hardly
economical. Indeed, 5.57 precision was achieved with only one station
per subregion.

The results of Table 3 show the applicability of the random
sampling in the network design. The procedure depends only on the
geometry of the area and its raingage configuration. The results of
Table 6 depend on the rainfall data. Both tables clearly show suffi-
ciency of two raingages per subregion. The reduction of uncertainties
due to introduction of more raingages was insignificant. Table 7 shows
that significant correlation at lag 1 existed, while dependence at

higher lags was negligible: from lag 0 to lag 1, the reduction of
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uncertainty was maximum for all subregions. This confirmed the results
of the analysis of the matrix of Lagrange multipliers: the dominance of
AO and Al associated with lags 0 and 1. Additionally, the sampling in
time every second year produced the uncertainties of the same order as
for every year, thus two year records may be useful for longer time

series.

7.2 COMPARISON OF RESULTS

The results of this study (the curves of figure 3) were compared
with those of Rodriguez-Iturbe and Mejia (1974, figures 7). The para-
meter A3 was related to their correlation parameter h as:

2

A, =Ah

3
where A is the area of rectangle that approximates the shape of
Louisiana (A = 44,520 milesz). For the area of central Venezuela they
obtained a reduction in variance by 2.57 for 20 stations operating for
15 years which is very close to the reéults of this study.

Another important comparison is with the work of Eagleson (1967).
To this end, the area of Louisiana was approximated by a triangle and
the mean distance between any two randomly chosen points was computed by
comparing that triangle with the one of unit area and multiplying by the
factor of 0.5544 (Mattern, 1960). The correlation distance obtained in
this way was r, = 17 miles. Then the pérameter B, as defined by Eagle-
son, is B = AO'S/r0 = 1.80. Using Eagleson's curves for the optimum
number of raingages for water yield studies (Eagleson, 1967, figure 9),
9 raingages yielded 0.32 normalized variance of the sample mean (or 0.26
for 18 stations). For Louisiana, the normalized variance of space-time

mean rainfall would be var(R) = 0.60 that gives 4 raingages from

Eagleson's curves sufficient for Louisiana. This is comparable with our
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results, since the space-time variance is not exactly equal to Eagle-

son's and his curves were also derived for much smaller areas.

8. CONCLUSIONS

1. For time design, the entropy method is proposed to determine the
order of autocorrelation coefficient. The Lagrange multipliers are
interpreted in their new role of explaining the entropy model.

2. The entropy spectrum is derived for reconstruction of historical
records. It also explains the distribution of information per
frequency or period different for the subregions of higher and
lower correlationm.

3. For space design, an alternative to the model of Rodriguez-Iturbe
and Mejia is suggested.

4, Space-time trade-off is performed by computing the entropy matrix
that gives the distribution of uncertainties per subregion. It is
concluded that one year time interval sampling must be preserved
even for the area greater than Louisiana.

5. One station per subregion is shown to be effective both for reduc-
tion of variance and computation of individual entropies. This is
also validated by comparing results with the previoué investigations.

6. The results of this study are confined to long-term areal rainfall

only.
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APPENDIX A
The pdf for the random sampling of distances d can be derived as

follows. Given the constraints:

)
SIDp(d) d@d) =1 (a-1)
4o <
J_.dp@d) dd =d (A-2)
2 a% p(a) ad = E@a%) = 3% + sé (a-3)
The pdf by the maximum entropy method is given as:
P(d) = exp(~ Ay = Ad = 1d%) (A-4)
From (A-1),
oo 2 _
I exp (- AO - Ald - Azd Ydd=1
Og) = 7% exp(- Ad - 2,42 ad (A-5)
exp AO = J_, exXp 1 )
Simplifying,
"\i e 0.5 M2
EXP(AO) = eXP(W) f—oo EXP(" ()\zd) -+ -_-ﬁ) dd
2 2(x)
and integrating,
>\2
o (105 gL
exp (1) G eXP(“
2 2
The zeroth Lagrange multiplier is:
>\2
A =2 ln m-41n A + (A-6)
0 2 2 2 4A2
From (A-5),
AO = ln[ff: exp (- Ald - Azdz) dd] (A-7)

Differentiating (A-5) with respect to Al and AZ,
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9, fr: d exp(- Ald - Azdz) dd o _
T T - == af@ dd=-3  (a-8)
I 2 -
1 w exp(- Ad - A 4% ad
- 1 2
B, 7 a% exp(- Ad - Azdz) ad . 5
- 5 = - T a% @) ad
Xy e (- nd - A,a%) ad
~ 2 =2
= - (s5+ 3 (A-9)

Differentiating (A-5),

Ny A
2w (4-10)
1 2
S )
I S,
2
Equating (A-8) to (A-10) and (A-9) to (A-11) and solving for Al and Az,
A== (A-12)
S
d
Ay = ‘li (A-13)
28

The pdf by the maximum entropy method is,

=2
1 (d -4d)
p(d) = exp[- ]
(2ns§)°'5 552

(A~14)
d
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APPENDIX B
Derivation of r(d) is performed as follows. Specifying constraints

for expomential distribution,

f'g‘” £(x) dx = 1 (B-1)
fg x f(x) dx = &% (B-2)

The pdf of maximum entropy takes the form:
f(x) = exp(- AO - klx) (B-3)

fo exp (- AO - Alx) dx =1

exp(ko) = fg exp (- Alx) dx (B-4)
and
AO = - 1n Al (B-5)
From (B-5),
oA
wt (B-6)
1 1
From (B-4),
BAO fg exp (- klx) dx - _
o = - =~ f x f(x) dx = - x _ (B-7)
1 fo x f(x) dx
By equating (B-6) and (B-7), Al is obtained:
1
)\1 == (B~8)
X

Substituting (B-~8) and (B-5) into (B-3),

£(x) = 1 exp(- X
X X
or
r(d) =1 exp(- 9 (B-9)
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APPENDIX C
The entropy method for a time series where information is given in

terms of autocovariances can be derived as follows. Given:

1 T o
co(xo, cees xT) = T .fo X (variance)
’ (C-1)
1 T
ck(xo, oo xT) = T jfo xJ xj-k (autocovariance)

If no other information is available but (C~1), the probability
density function that has maximum entropy while agreeing with the data
will yield the set of {AO, vees Xm} where 0 < k < m represents the
number of available constraints. The maximum entropy distribution for

this case is

1 o .
p(xo, cees xT) =z exp[—- kfo Ak 0.5 rk] (C-2)

where Z is the partition function from general POME procedure and is

determined from:

R
A p(xo, e xT) dxo de =1 (C-3)

Note that (C-2) can be expressed as:

-

p(xo, oo xT) =5 expl- O.S(XT s A+ X)] (C-4)

where A is a matrix

Ay s l3-1] 2w
= 37 (c-5)
J 0 s otherwise

and XT,X are vector-transpose and vector of rainfall depths. The
extension of this solution (Jaynes, 1982) considers the case when the
given time base T is much greater than the number of constraints m.

From the Toeplitz theory for T >> m, the eigenvalues of A will become:
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, = C-6
85 g(zj) (C-6)
where zj are the roots of zT+1 = 1 on the unit circle or:

zj = expl2miji/(T+1)] (c=-7)

where 0 < j < T. Since the partition function is given as:

T
InZ =-0.50 I 1n g, + constant (Cc-8)
j=0
Then
T
InZ >~ 0.50 I 1n[g(z,)]
3=0 J

where g(zj) is defined as:
o k
g(z,) = I Ak b4 (C-9)
3 k=0

@©

As T » o, InZ »~ 0,50 ln[gj(exp(Zﬂij/(N+1)))] (C-10)
j=0

This summation for longer time interval becomes integration on a unit

circle and zj will be close to one another, then
2 _ 1 2w
T I1n Z(é ) = - 5 Jb In[g(exp(i0)] a6
or

T+l 27 n
1n Z(Xk) = - fO 1n[kii0 Ak exp(ike)] do (C-11)

Then the Lagrangian multipliers are determined from

0.5(T+1) Cp = - (a/axk) [1n Z(Ak)] (C-12)

or

_ 1 27  exp(ik@) de@
%« T 277’0 Tm (C-13)
z exp (ike)
k=0 Ak
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To illustrate, let us work out a couple of simple examples for various

values of k.

(a) For k = 0:

ey =L 2

0

>J|°‘
]

o
S’I"

Sain

which yields

AO = 1/c0

This term can also be obtained from

= 1/(T+1) B/EAk In(det A)

“k
where det A = Ag+1 so

8 100 - i
BAO XP+1 KO
0
Thus,
e =1 I+ _ 1
0 T+1 AO AO

which is the same as (C-14).

(b) For k=1

e oL g
0 27 °0 AO + Al exp(16)

o = 1 fgn exp(ig)de

1 2q A + Al exp(i8)

(C-14)

(C-15)

(C~16)

Using the substitutions: z = exp(i6) and dx = d6i exp(ie),

1 dz

1

0

s dz
0 2my |z |=1 z[z = (- Ao/ 2]

dz
17 7m; Tzl T 2y RETE %o

- Znill f|z|=1 z(z - ZO)

|

- /N

The first equation can be solved by residue theorem, while the

second equation by Cauchy integral formula, yielding:

c, = (l/ZNiAl) o 2w, 1f (z = 2z

where f(z) =



]

¢y (l/ll) e 1 = l/)\l

or A

1 1/c

1
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(C-17)

which is the new Lagrangian multiplier introduced in the model after

considering both <y and Cy-

(c) For k = 2, autocovariances of rainfall depth are given as:

S T

0 T+1 §=0 j
e =ik T ox x
1 T+l j= j+1
c, = 2 TEZ X, X

2 T+lJ=0 j+2

The Lagrangian multipliers are then determined from:

c -1 f21r do
0 271 "0 A0-+ ll exp(i8) + Az exp (216)
S 1 dz
ZWiAZ |z|=l z(z - zl)(z - zz)
e =L 27 exp(ig)do
1 27w °0 AO + Al exp(i9) + AZ exp(2i0)
- 1 I dz
2mik, lz|=1 (z - z,)(z = z,)
-1 b exp(2i8)do
€227 7 % T A exp(i6) + A, exp(216)
1 zdz

= 2nil2 f|z|=l (z - zl)(z - z2)

Solving the last equation:

c, = (1/A2) * [Res(z = zl) + Res(z = z2)]

= = . b4 _ %
Res(z = zl) - ii:l [(z - zl) (z - zl)(z - zz)] B -z
Res(z = z,) = lim [(z - z,) - z 1= %2
222 2 (z - zl)(z - zz) -z

(C-18)
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Thus:

ey 1 (U/N) 2/ (z) = 2) + 2,/ (2, = 201 = 1/},

Az = l/c2 (C-19)

A similar derivation for o cl, c2, c, ylelds

3
A=

3 1/c3

or in general, the last Lagrangian multiplier introduced to the model
will always be as:

Ak = l/ck (C-20)

Exact theoretical proof can be done simply by mathematical induction.



APPENDIX D

Levinson-Burg algorithm for solving the Toeplitz matrix

Given the matrix equation of either autocovariance ¢, or correla-

k
tion coefficients r, :
) k - _ - - -
-
ro r_l r_2 . o rl_m 1 Pm_1
T r e e e e e e o s b 0
-1 00 Y hd .1 = Y (D_l)
| Tm-1 . . « o . r1 r0 | I bm_1 -0 -

For known values of L Pm-l and bm are solved as a system of m

equations with m unknowns. To initiate the algorithm one has to start

with m = 1. Then T, = PO and b0 = 1. Every higher m (>2) system is

solved by using the solution of previous ome with lower m. In general,

the system (mtl)x(mt+l) will be solved from (D-1) as:

- P~
*
r, T o o T 1 0 Pm—l A n
r T . . T b b* 0 0
'1 0 .l—m - .1 +4d . m-1 . +d
m m
*
Tl T m-1 b 0
er T ] 0 1 Am Pm-l
From this equation: -
m-1
A = 3 b
m m-n m
n._—‘

and %m {D-2)

d = - 2

m Pm-l
The matrix of (m+l)x(mt+l) system will have the following coefficients:

~— - - ~ o -t
1 1 0
a b b* 4
m
*
#n-1 Pn-1 L
a_ 0 l j 1 )
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Note that for the real values of precipitation depths, bm = b*m

which simplifies calculation in (D-2) and (D-3). From (D-3)

a_ =b_ +4d (D-4)
s . s m-s
and new constant P_ is solved by using P and d _:
m m-1 m
= 2 '
Po=P 5 - la | (D-5)
Thus, the new system of (mtl)x(mt+l) is defined as:
- - = - - -
Tg o+ o+ o T 1 Pm
a; | = 0 (D-6)
YT ...rT r
R m 0 _ 0 n L ..I

Equation (D-6) is the starting point in solving (m+2)x(m+2) system

of equations, after substitution bk = ay and Pm_1 =P



