

ME, ECE, IE Capstone Design Programs

Team #28: Moonwalker Robotic Skates Evan Guinta (ME), Jesse Kliebert (ME), Matthew Ohrberg (EE)

Background

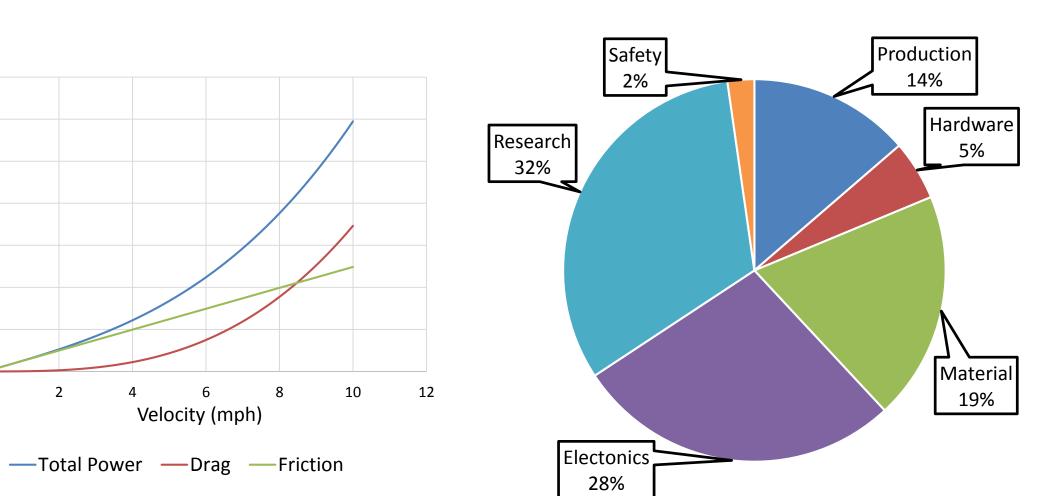
- Last Mile Problem
 - After commuting by car, bus, train, etc., most people still have to travel a little further to get to there final destination.
 - For that last part of the journey, will the commuter walk, bike, or skateboard?
- Objective Statement
 - Design and prototype a solution for the last mile problem.
 - This design will have two wheeled platforms that can be easily worn over ones shoes.
 - This design will have an electromechanical system that will propel the user forward.

Competitors

RocketSkates

www.google.com, keyword: RocketSkates

www.google.com, keyword: Boosted Board


Specifications

Test	Specs	Results
Weight Test	<8 lbs	8.75 lbs
Load Test	250 lbs	250 lbs
Speed Test	10 mph	6 mph
Mile Range	2 miles	2.1 miles

Sponsors: Brian LeBlanc

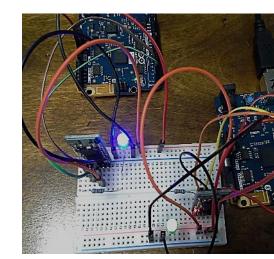
Power Requirement

60

Total Expenses

Project Timeline

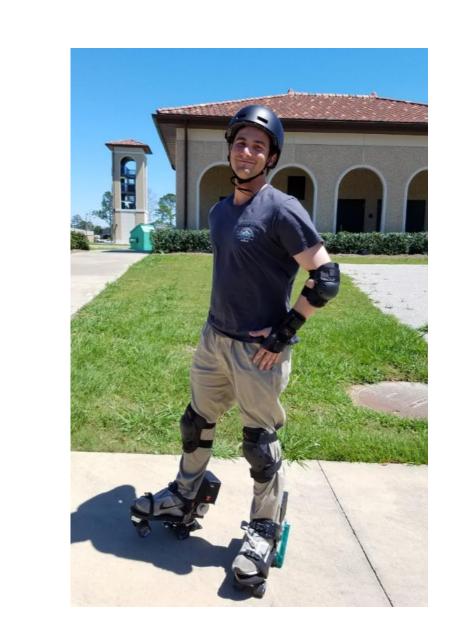
Aug	Sept	Oct	Nov	Dec) Jan	Feb Mar	Apr	May
•Project Specifications	•Concept Generation	•Engineering Analysis	 Manufacturing and Testing Plan 	•Fall Presentation	•Began Manufacturing	CompletedManufacturing	•Testing	•Project Completion


PWM (Both Skates)

- The pulse width modulation activates for both skates when the IR sensor and Tachometer are activated.
- The PWM controls the speed of the motors.

Testing

Bluetooth Linked


- Both Bluetooth modules where programmed using AT commands through both Arduino 101s.
- Once the modules are paired and linked the blue and green LEDs turn on

2 Mile Test

- Total distance:2.1 miles
- Max speed:8mph
- Avg. speed:4mph

Safety Equipment

- Shop Safety
- Safety Glasses
- No Loose Clothing
- Long Pants
- Thermal Gloves when Plastic Welding

Testing Safety

- Helmet (Complies with ASTM F1492-08 Standard)
- Elbow Pads
- Knee Pads
- Wrist Pads

Conclusion

- The skates were able to withstand the maximum 250 lb weight limit
- Each individual skate was approximately 0.7 lbs over the weight limit
- The motor was successfully controlled by the different sensors.
- The mile range was achieved at a riding speed of 7mph.
- Improvements can be made for comfort and durability.

Adviser: Dr. Wanjun Wang