Fundamental of Engineering Examination Review Sessions

January 18, 2017 6:00 PM 1225 Patrick F. Taylor Hall

Coordinator of the Review Sessions

- Dr. Louay Mohammad
- Civil and Environmental Engineering
- ► E-mail: Louaym@Lsu.Edu

Fundamental of Engineering Examination -- Outline

Computer Based Testing

Why take the FE Exam?

- Employment
 - State agencies requires FE certification
- Pursue PE license
 - Regulations established by state licensing boards
 - General requirements

 - Pass FE exam
 - Obtain 4 or more years of engineering experience (some credit given for advanced engineering degree)
- Professional Career Advancement

Why take the FE Exam?

- LAPELS recently changed rule § 1509 allowing Engineer Interns to take the PE exam any time subsequent to becoming certified as an El with LAPELS.
- ➤ The rule became effective July 20, 2014
- Note, there is a risk associated with "early taking" which will be clearly shown on the applications as some states have said that they will not accept a PE exam taken before 4 years of experience are gained. So if anyone thinks they may move to another state in the future, they should research that state board's position on this issue
- At the time of application to LAPELS for professional licensure, the "early taker" applicant will be required to have passed both the FE and PE exams and have gained 4 years of progressive engineering experience. Individuals that wish to wait until they have 4 years of progressive engineering experience can apply at that time. Those applicants will be licensed immediately upon passing the PE exam.

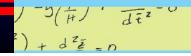
Review Session Overview

- Review of subjects covered on national FE Exam
- January 18 March 29, 2017
 - Wednesday
 - 6:00pm to 8:00pm
 - Review schedule
 - http://www.eng.lsu.edu/students/current/resources/fe
 - Example problems

Review Session Schedule

DATE	TOPIC COVERED	INSTRUCTOR	CONTACT
January 18	Introduction	Mohammad	louaym@lsu.edu
January 25	Statics	Moorthy	moorthy@lsu.edu
February 1	Electrical Engineering	Rabalais	mrabal3@lsu.edu
February 8	Strength of Materials	Moorthy	moorthy@lsu.edu
February 15	Dynamics	Ramachandran	pram@lsu.edu
February 22	Thermodynamics	Schoegl	ischoegl@tigers.lsu.e du
March 15	Fluid Mechanics	Tsai	ftsai@lsu.edu
March 22	Math	Hongchao Zhang	hozhang@math.lsu.e du
March 29	Engineering Economy	Sarker	bsarker@lsu.edu

*All sessions are from 6:00 PM to 8:00 PM


Exam Administration

- NCEES computer-based exams are administered exclusively at approved Pearson VUE test centers
- NCEES Examinee Guide 38 Pages
 - http://ncees.org/wp-content/uploads/2015/07/ExamineeGuide_6-17-16_.pdf
- Website:
 - -www.ncees.org

NCEES EXAMINEE GUIDE

DECEMBER 2014

Reference Materials

- NCEES FE Supplied Reference Handbook
 - free download
 - Register or log in to MyNCEES to download your free copy of the <u>FE</u>
 Reference Handbook
 - https://account.ncees.org/login
- Familiarize yourself with the e-version of hand book prior to the test
 - http://ncees.org/engineering/fe/
- NCEES YouTube channel
 - Explore the computer-based exam experience
 - https://www.youtube.com/playlist?list=PLiZ0hjHNi9jzR8RW69ndkjlgH8bzj0ew-
 - Pearson VUE exam-day experience
 - How to search the onscreen NCEES reference handbook
 - Pearson VUE reusable booklet
 - How to flag items for review
 - Onscreen calculator for computer-based exams (TI-30XS)
 - Computer-based testing hotkeys
 - » Managing your time on exam day

Eligibility

- No longer apply to LAPELS for approval.
- Register for the exam directly with <u>NCEES</u>
 - https://account.ncees.org/login
 - Current Exam fee: \$225 Paid directly to NCEES
 - Check website for cancelation/re-fund policy
 - Future Exam Fee: Effective January 2018 will be reduced by \$50 to \$175

FE CBT Exam Specifications

- Greater scheduling flexibility for candidates, year-round.
 - Exams will be administered 175 days a year
 - Monday through Friday
- Test can be taken up to 3 times in a twelve month period and, but only once per testing window
- Effective January 1, 2016
 - Year-Round Testing (January December)
 - Testing Windows: four quarters of the year.
 - January March
 - » April June
 - July September
 - » October December
- Best time available: Register as far in advance as possible
- > Fifteen available seats per testing session.
- Results (P/F): e-mail notification from NCEES within 7-10 days.

Eligibility / Venue

- Can I choose to take pencil and paper version?
 - No
 - FE and FS exams will be offered only on computers at approved Pearson VUE testing centers.
 - http://cbt.ncees.org/where-will-i-take-my-exam/
 - » Baton Rouge, Metairie, Shreveport

FE Exam specifications

- Total Duration of Exam: 6:00
 - A nondisclosure agreement: 0:02
 - Tutorial: 0:08 minutes
 - Exam length: 5:20
 - Scheduled Break: 0:25
- Test make up
 - 7 Discipline Specific Exams: http://ncees.org/exams/fe-exam/
 - Chemical
 - Civil
 - » Electrical/ Computer
 - Environmental
 - Industrial
 - » Mechanical
 - Others
 - 110 multiple choice questions
- Answer all questions
- Passing score
 - Expert committee
 - Level of performance
 - Corresponds with minimal competence in that discipline

Discipline Specific Specifications can be found at:

Chemical

http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Chem-CBT_with-ranges.pdf

Civil

 http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Civil-CBT-specs_withranges.pdf

Electrical and Computer

http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Ele-CBT-specs_with-ranges.pdf

Environmental

http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Env-CBT-specs_with-ranges.pdf

Industrial

http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Ind-CBT-specs_with-ranges.pdf

Mechanical

http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Mec-CBT-specs_with-ranges.pdf

Other Disciplines

 http://cbt.ncees.org/wp-content/uploads/2013/01/FE-Other-CBT-specs_withranges.pdf

S2

or we can put this: http://cbt.ncees.org/major-domains-for-the-fe-exams-beginning-in-2014/

This is the website that lists the links for each discipline spec Student, 6/21/2013

FE Exam specifications – Example of Industrial 13 Topics

Modeling and Computations

	10 10pies			A. Algorithm and logic development (e.g., flow charts, pseudocode)	
(no	vledge Numb	erof Questions		Databases (e.g., types, information content, relational) Decision theory (e.g., uncertainty, risk, utility, decision trees)	
1.	Mathematics A. Analytic geometry B. Calculus C. Matrix operations D. Vector analysis E. Linear algebra	6–9		 D. Optimization modeling (e.g., decision variables, objective functions, and constraints) E. Linear programming (e.g., formulation, primal, dual, graphical solutions) F. Mathematical programming (e.g., network, integer, dynamic, transportation, assignment) G. Stochastic models (e.g., queuing, Markov, reliability) H. Simulation 	
2.	Engineering Sciences A. Work, energy, and power B. Material properties and selection C. Charge, energy, current, voltage, and power	5–8	7.	Industrial Management A. Principles (e.g., planning, organizing, motivational theory) B. Tools of management (e.g., MBO, reengineering, organizational structure) C. Projectivities of management (e.g., scheduling, PERT, CPM)	8–12
ì.	Ethics and Professional Practice A. Codes of ethics and licensure B. Agreements and contracts C. Professional, ethical, and legal responsibility D. Public protection and regulatory issues	5–8	8.	D. Productivity measures Manufacturing, Production, and Service Systems A. Manufacturing processes B. Manufacturing systems (e.g., cellular, group technology, flexible) C. Process design (e.g., resources, equipment selection, line balancing)	8–12
l.	Engineering Economics A. Discounted cash flows (PW, EAC, FW, IRR, amortization) B. Types and breakdown of costs (e.g., fixed, variable, direct and indirect labor) C. Cost analyses (e.g., benefit-cost, breakeven, minimum cost, overhead) D. Accounting (financial statements and overhead cost allocation) E. Cost estimation F. Depreciation and taxes G. Capital budgeting	10–15)		D. Inventoryanalysis (e.g., EOQ, safetystock) E. Forecasting F. Scheduling (e.g., sequencing, cycle time, material control) G. Aggregate planning H. Production planning (e.g., JIT, MRP, ERP) I. Lean enterprises J. Automation concepts (e.g., robotics, CIM) K. Sustainable manufacturing (e.g., energy efficiency, waste reduction) L. Value engineering	
ī	Probability and Statistics A. Combinatorics (e.g., combinations, permutations) B. Probability distributions (e.g., normal, binomial, empirical) C. Conditional probabilities D. Sampling distributions, sample sizes, and statistics (e.g., central tendency, dispersion) E. Estimation (e.g., point, confidence intervals)	10–15	9.	Facilities and Logistics A. Flow measurements and analysis (e.g., from/to charts, flow planning) B. Layouts (e.g., types, distance metrics, planning, evaluation) C. Location analysis (e.g., single- and multiple-facility location, warehouses) D. Process capacity analysis (e.g., number of machines and people, trade-offs) E. Material handling capacity analysis F. Supply chain management and design	8–12
	F. Hypothesis testing G. Regression (linear, multiple) H. System reliability (e.g., single components, parallel and series systems)		10.	Human Factors, Ergonomics, and Safety A. Hazard identification and risk assessment	8–12
6.	I. Design of experiments (e.g., ANOVA, factorial designs) Modeling and Computations A. Algorithm and logic development (e.g., flow charts, pseudocode) B. Databases (e.g., types, information content, relational) C. Decision theory (e.g., uncertainty, risk, utility, decision trees) D. Optimization modeling (e.g., decision variables, objective functions, and	8–12	11.	Work Design A. Methods analysis (e.g., charting, workstation design, motion economy) B. Time study(e.g., time standards, allowances) C. Predetermined time standard systems (e.g., MOST, MTM) D. Work sampling E. Learning curves	8–12
	 constraints) E. Linear programming (e.g., formulation, primal, dual, graphical solutions) F. Mathematical programming (e.g., network, integer, dynamic, transportation assignment) G. Stochastic models (e.g., queuing, Markov, reliability) H. Simulation 	n,	12.	Quality A. Six sigma B. Management and planning tools (e.g., fishbone, Pareto, QFD, TQM) C. Control charts D. Process capability and specifications	8–12
7.	Industrial Management A. Principles (e.g., planning, organizing, motivational theory)	8–12		E. Sampling plans F. Design of experiments for quality improvement	

FE Exam specifications

<u>Discipline</u>									
Chemical	Civil	Electrical	Environmental	Industrial	Mechanical	Other			
Mathematics	Mathematics	Mathematics	Mathematics	Mathematics	Mathematics	Mathematics and Advanced Engineering Mathematics			
Probability and Statistics	Probability and Statistics	Probability and Statistics	Probability and Statistics	Engineering Sciences	Probability and Statistics	Probability and Statistics			
Engineering Sciences	Computational Tools	Ethics and Professional Practice	Ethics and Professional Practice	Ethics and Professional Practice	Computational Tools	Chemistry			
Computational Tools	Ethics and Professional Practice	Engineering Economics	Engineering Economics	Engineering Economics	Ethics and Professional Practice	Instrumentation and Data Acquisition			
Material Science	Engineering Economics	Properties of Electrical Materials	Material Science	Probability and Statistics	Engineering Economics	Ethics and Professional Practice			
Chemistry	Statics	Engineering Sciences	Environmental Science and Chemistry	Modeling and Computations	Electricity and Magnetism	Safety, Health, and Environment			
Fluid Mechanics/Dynamic	Dynamics	Circuit Analysis (DC and AC Steady State)	Risk Assessment	Industrial Management	Statics	Engineering Economics			
Thermodynamics	Mechanics of Materials	Linear Systems	Fluid Mechanics	Manufacturing, Production, and Service Systems	Dynamics, Kinematics, and Vibrations	Statics			
Material /Energy Balances	Materials	Signal Processing	Thermodynamics	Facilities and Logistics	Mechanics of Materials	Dynamics			
Heat Transfer	Fluid Mechanics	Electronics	Water Resources	Human Factors, Ergonomics, and Safety	Material Properties and Processing	Strength of Materials			
Mass Transfer and Separation	Hydraulics and Hydrologic Systems	Power	Water and Wastewater	Work Design	Fluid Mechanics	Materials Science			
Chemical Reaction Engineering	Structural Analysis	Electromagnetics	Air Quality	Quality	Thermodynamics	Fluid Mechanics and Dynamics of Liquids			
Process Design and Economics	Structural Design	Control Systems	Solid and Hazardous Waste	Systems Engineering	Heat Transfer	Fluid Mechanics and Dynamics of Gases			
Process Control	Geotechnical Engineering	Communications	Groundwater and Soils		Measurements, Instrumentation, and Controls	Electricity, Power, and Magnetism			
Safety, Health, and Environment	Transportation Engineering	Computer Networks			Mechanical Design and Analysis	Heat, Mass, and Energy Transfer			
Ethics and Professional	Environmental Engineering	Digital Systems							

FE Exam specifications -- What can you bring to the exam room?

- Enhanced security for exam content
 - Check-in: government issued ID, photo taken, and palm-vein scan
 - Watch the video
 - http://www.ncees.org/Exams/Study_materials/Download_FE_Supplied-Reference_Handbook.php

Permitted

- Calculators
- Check Calculator Policy
 - http://ncees.org/exams/calculator/
- Small dry-erase board will be supplied for calculations
- FE Reference Manual will be embedded in the computer in a searchable pdf file format
- Watch the video
- http://www.ncees.org/Exams/Study_materials/Download_FE_Supplied-Reference_Handbook.php

Suggestions for Taking the FE Exam

- Start with subject areas you are familiar with
 - Stronger areas to weaker areas.
- Manage your time wisely
 - Don't spend more than 3-5 minutes on a question
 - return to the question later
 - At about 20 minutes before finish time
 - return to the skipped questions
 - At about 5 minutes from the end, guess
 - Wrong answers have no penalty

Useful Web site

- >www.eng.lsu.edu
- >www.ncees.org
- >www.lapels.com

Good Luck