Oil Refinery

- Crude Oil: $431/ton, $66/bbl, $1.57/gal
- Chemicals: $566/ton, $73/bbl, $1.73/gal
- Fuels: $66/bbl, $73/bbl, $1.73/gal
- Polymers: $566/ton, $73/bbl, $1.73/gal
Biomass Refinery

- Biomass
 - $40/ton
 - $15/bbl*
 - $0.36/gal*

- Feed
 - Equivalent energy basis

- Food

- Chemicals
 - $362 – 543/ton
 - $50 – 75/bbl
 - $1.20 – 1.80/gal

- Fuels

- Polymers

- Fiber

- Pharmaceuticals

* Equivalent energy basis
Chemicals: Thermochemical platform

Lignocellulose \(\xrightarrow{\text{Gasify}} \) CO \(\xrightarrow{\text{H}_2 \text{Catalyst}} \) Chemicals
(Syngas)

- Fischer Tropsch fuels
- Methanol
- Mixed alcohols
- Ammonia
Chemicals: Thermochemical platform

Lignocellulose $\xrightarrow{\text{Gasify}}$ CO $\xrightarrow{\text{Catalyst}}$ H$_2$ (Syngas) $\xrightarrow{}$ Chemicals

- Fischer Tropsch fuels
- Methanol
- Mixed alcohols
- Ammonia

Disadvantages

- 30–40% biomass energy lost to heat
- Must couple to electricity markets
- Expensive gasifiers
- Complex downstream processing
- Difficult to supply enough biomass to achieve economy of scale
Chemicals: Sugar platform

Corn → Sugars → Chemicals
Enzymes
Microorganism
Squeeze

Sugarcane

Ethanol
Butanol
Acetone
2,3 Butanediol
Glycerol
Acetoin
Acetic acid
Lactic acid
Propionic acid
Succinic acid
Butyric acid
Citric acid
Chemicals: Sugar platform

Disadvantages

- Limited availability
- Competition with food
- Requires sterility
- Difficult separations
Chemicals: Sugar platform
(2nd Generation)

Lignocellulose ➔ Sugars ➔ Chemicals

Enzymes

Microorganism

Ethanol
Butanol
Acetone
2,3 Butanediol
Glycerol
Acetoin
Acetic acid
Lactic acid
Propionic acid
Succinic acid
Butyric acid
Citric acid
Chemicals: Sugar platform (2nd Generation)

Lignocellulose → Sugars → Chemicals

Enzymes → Microorganism

Disadvantages

- Requires sterility
- Expensive enzymes
- Difficult to use all sugars
- Uses GMOs
- Lignin not converted to liquid fuels
- Extensive pretreatment required
- Difficult to supply enough biomass to achieve economy of scale

Chemicals:
- Ethanol
- Butanol
- Acetone
- 2,3 Butanediol
- Glycerol
- Acetoin
- Acetic acid
- Lactic acid
- Propionic acid
- Succinic acid
- Butyric acid
- Citric acid
Chemicals: Mixed Acids platform

Lignocellulose → Carboxylic acids/salts → Chemicals

Mixed-Culture Microorganisms

Chemistry

Ketones
Aldehydes
Secondary mixed alcohols
Primary mixed alcohols
Carboxylic acids
Esters
Ethers
Anaerobic Digestion

Biomass

(cellulose, starch,
proteins, fats)

Mixed culture of
microorganisms

Hydrolysis → Acidogenesis → Acetogenesis

(free sugars, amino acids, fatty acids)

(Carboxylic acids, NH₃, CO₂, H₂S)

Carboxylic acids = Volatile fatty acids [VFAs] (e.g., acetic, propionic, butyric, ..., heptanoic acid) (C2 to C7)

Methanogenesis

(Acetic Acid, CO₂, H₂)

(CH₄, CO₂)
Desirable Process Properties

- No sterility
- No GMOs
- Adaptable
- No pure cultures
- Energy in lignin ends up in liquid fuel

- Low capital
- No enzymes
- High product yields
- No vitamin addition
- Co-products not required
Desirable Fuel Properties
Fuel Properties

<table>
<thead>
<tr>
<th></th>
<th>Ethanol</th>
<th>MTBE</th>
<th>Mixed Alcohols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octane</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Volatility</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Pipeline shipping</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Energy content</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Heat of vaporization</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Ground water damage</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Properties of Fuel Oxygenates

<table>
<thead>
<tr>
<th>Alcohols</th>
<th>Blending Octane (R + M)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure @38°C (kPa)</td>
<td></td>
</tr>
<tr>
<td>Methanol (MeOH)</td>
<td>108</td>
</tr>
<tr>
<td>Ethanol (EtOH)</td>
<td>115</td>
</tr>
<tr>
<td>Isopropanol (IPA)</td>
<td>106</td>
</tr>
<tr>
<td>tert-Butanol (TBA)</td>
<td>100</td>
</tr>
<tr>
<td>Isobutanol (IBA)</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethers</th>
<th>Blending Octane (R + M)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methy tertiary butyl ether (MTBE)</td>
<td>110</td>
</tr>
<tr>
<td>Di-isopropyl ether (DIPE)</td>
<td>105</td>
</tr>
<tr>
<td>Isopropyl tertiary butyl ether (IPTBE)</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Content</th>
<th>Energy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MJ/L)</td>
<td>(Btu/gal)</td>
</tr>
<tr>
<td>Gasoline</td>
<td>34.9</td>
<td>125,000</td>
</tr>
<tr>
<td>Mixed Alcohols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version 1</td>
<td>29.0</td>
<td>104,000</td>
</tr>
<tr>
<td>Mixed Alcohols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version 2</td>
<td>26.5</td>
<td>95,000</td>
</tr>
<tr>
<td>Ethanol</td>
<td>23.4</td>
<td>84,300</td>
</tr>
</tbody>
</table>
Pretreatment is needed

Source: Michael Ladisch, Purdue Univ.
Lime Treatment

Biomass + Lime

Gravel
In-Situ Digestion

48-h Digestion (g digested/g fed)

- Sugar-cane bagasse
- African millet straw
- Sorghum straw
- Tobacco stalks

- Untreated
- Lime-treated
Lignin Removal

No Air

Air

Lignin Content (g lignin/100 g bagasse)

Time (days)
Mixed-Acid Fermentation

Lime Treatment: 2 weeks, 25°C
Terrestrial Inoculum

Conversion

Total acid concentration (g/L)

LRT (days)

VSLR (g/(L·d))

Air

No Air

Conversion

0 0.2 0.4 0.6 0.8 1

0 10 20 30 40 50 60

18 14 11 8 4 2 20.5 15 10 5 1

0
Building the Pile

~100 ft
Building the Pile
Building the Pile

Crew directing the flow
Fermentation

Biomass → Pretreat → Ferment → Dewater → Thermal Conversion → Hydrogenate

Lime Kiln → Lime → Carboxylate Salts

Calcium Carbonate → Mixed Ketones

Mixed Alcohol Fuels → Hydrogen
Environments where organic acids naturally form

- animal rumen
 - cattle
 - sheep
 - deer
 - elephants
- anaerobic sewage digestors
- swamps
- termite guts
Why are organic acids favored?

\[
\begin{align*}
\text{C}_6\text{H}_{12}\text{O}_6 & \rightarrow 2 \text{C}_2\text{H}_5\text{OH} + 2 \text{CO}_2 \quad \Delta G = -48.56 \text{ kcal/mol} \\
glucose & \quad \text{ethanol} \\
\text{C}_6\text{H}_{12}\text{O}_6 & \rightarrow 3 \text{C}_2\text{H}_3\text{OOH} \quad \Delta G = -61.8 \text{ kcal/mol} \\
glucose & \quad \text{acetic acid}
\end{align*}
\]

The actual stoichiometry is more complex

\[
\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow \text{acetate} + \text{propionate} + \text{butyrate} + \text{CO}_2 + \text{CH}_4 + \text{H}_2\text{O}
\]
Typical Product Spectrum at Different Culture Temperatures

<table>
<thead>
<tr>
<th></th>
<th>40°C</th>
<th>55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 – Acetic</td>
<td>41 wt %</td>
<td>80 wt %</td>
</tr>
<tr>
<td>C3 – Propionic</td>
<td>15 wt %</td>
<td>4 wt %</td>
</tr>
<tr>
<td>C4 – Butyric</td>
<td>21 wt %</td>
<td>15 wt %</td>
</tr>
<tr>
<td>C5 – Valeric</td>
<td>8 wt %</td>
<td><1 wt %</td>
</tr>
<tr>
<td>C6 – Caproic</td>
<td>12 wt %</td>
<td><1 wt %</td>
</tr>
<tr>
<td>C7 – Heptanoic</td>
<td>3 wt %</td>
<td><1 wt %</td>
</tr>
</tbody>
</table>

100 wt % 100 wt %
Storage + Pretreatment + Fermentation

Biomass + Lime + Calcium Carbonate

Tarp Cover

Gravel

Air
Technology Evolution

- Source of inoculum
- Type of buffer
Marine Inoculum

Air

Terrestrial Inoculum

No Air

Total acid concentration (g/L)

VSLR (g/(L·d))

Conversion

LRT (days)

0 0.2 0.4 0.6 0.8 1
Ammonium Bicarbonate Buffer

40ºC

Graph showing the total acid concentration over time for Ammonium Bicarbonate and Calcium Carbonate.
Ammonium Bicarbonate Buffer

55°C

![Graph showing the Total Acid Concentration (g/l) over time with different compounds added at specific time points. The graph includes points for NH$_4$HCO$_3$ and CaCO$_3$.](image-url)
Dewatering

Biomass → Pretreat → Ferment → Dewater → Thermal Conversion

Biomass → Carboxylate Salts

Biomass → Calcium Carbonate

Lime Kiln

Mixed Alcohol Fuels

Mixed Ketones

Hydrogenate

Hydrogen
Vapor-Compression Dewatering

Compressor

Work

Distilled Water

Salt Crystals

Filter

Salt Solution (Fermentor Broth)
Dewatering Energetics

Ethanol Distillation (5% to 99.9%)

\[
\frac{\text{kg steam}}{3\text{ L ethanol}} = 8.4 \frac{\text{MJ heat}}{\text{kg ethanol}} = 28.5\% \text{ of the combustion heat}
\]

MixAlco: Carboxylate Salt Vapor-Compression Dewatering (5% to 100%)

\[
\frac{54.3 \text{ MJ heat}}{1000 \text{ kg water}} \times \frac{95 \text{ kg water}}{5 \text{ kg acid}} = \frac{1.03 \text{ MJ}}{\text{kg acid}} = 5.9\% \text{ of the combustion heat}
\]

Thermal Conversion

Biomass → Pretreat → Ferment → Dewater → Thermal Conversion

Lime → Lime Kiln

Carboxylate Salts → Calcium Carbonate

Mixed Ketones → Hydrogenate

Mixed Alcohol Fuels → Hydrogen
Thermal Conversion
Stoichiometry

\[\text{H}_3\text{CCOCaOCCH}_3 \rightarrow \text{H}_3\text{CCCH}_3 + \text{CaCO}_3 \]
Calcium Acetate Acetone

\[\text{H}_3\text{CCH}_2\text{COCaOCCH}_2\text{CH}_3 \rightarrow \text{H}_3\text{CCH}_2\text{CCH}_2\text{CH}_3 + \text{CaCO}_3 \]
Calcium Propionate Diethyl Ketone

\[\text{H}_3\text{CCH}_2\text{CH}_2\text{COCaOCCH}_2\text{CH}_2\text{CH}_3 \rightarrow \text{H}_3\text{CCH}_2\text{CH}_2\text{CCH}_2\text{CH}_2\text{CH}_3 + \text{CaCO}_3 \]
Calcium Butyrate Dipropyl Ketone
• Commonly known as dry distillation. Used before and during WWI to make acetone from calcium acetate
Thermal Conversion Kinetics

The graph shows the relationship between temperature (T) and time (t) for different conversion percentages (99%, 95%, 90%). The conversion increases as the temperature decreases and the time increases.
Hydrogenation

- Pretreat
- Ferment
- Dewater
- Thermal Conversion
- Hydrogenate

- Biomass
- Carboxylate Salts
- Calcium Carbonate
- Mixed Ketones
- Mixed Alcohol Fuels

- Lime Kiln
- Lime

- Hydrogen
Ketone Hydrogenation Stoichiometry

\[
\begin{align*}
\text{Acetone} & \quad \text{Isopropanol} \\
H_3C\text{CCCH}_3 & + H_2 \rightarrow H_3\text{CCH}_3 \\
\text{Methyl Ethyl Ketone} & \quad \text{2-Butanol} \\
H_3\text{CCH}_2\text{CH}_3 & + H_2 \rightarrow H_3\text{CCH}_2\text{CH}_3 \\
\text{Diethyl Ketone} & \quad \text{3-Pentanol} \\
H_3\text{CCH}_2\text{CCH}_2\text{CH}_3 & + H_2 \rightarrow H_3\text{CCH}_2\text{CCH}_2\text{CH}_3
\end{align*}
\]
Ketone Hydrogenation

Catalyst = 200 g/L Raney nickel
Temperature = 130°C
Time = 35 min
@ P = 15 atm (220 psi)
Hydrogenation

Ketone → Alcohol → Steam

Hydrogen
MixAlco Process – Version 2

Biomass → Pretreat → Ferment → Dewater → Acid Springing → Esterification → Hydrogenolysis

Mixed Alcohol Fuels

Hydrogen

Lime Kiln → Lime → Carboxylate Salts

Calcium Carbonate → Mixed Acids
Acid “Springing” Calcium Salts

Ca(Ac)$_2$ + H$_2$O → CO$_2$ + CaCO$_3$ + R$_3$NHAc

R = - CH$_2$CH$_3$

R = - CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_3$
Acid “Springing” Ammonium Salts

\[\text{R} = -\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \]
MixAlco Process – Version 2

Biomass → Pretreat → Ferment → Dewater → Acid Springing → Esterification → Hydrogenolysis

- Lime Kiln
- Calcium Carbonate
- Carboxylate Salts
- Mixed Acids
- Mixed Alcohol Fuels
- Hydrogen
Hydrogenation Stoichiometry

\[
\begin{align*}
\text{O} & \quad \text{H}_3\text{CCOOH} + \text{HOCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 & \rightarrow & \quad \text{H}_3\text{CCOCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 + \text{H}_2\text{O} \\
\text{Heavy Alcohol} & & & \text{Ester} \\
\text{O} & \quad \text{H}_3\text{CCOCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 + 2 \text{H}_2 & \rightarrow & \quad \text{H}_3\text{CCOOH} + \text{HOCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\
\text{Ester} & & & \text{Heavy Alcohol} \\
\text{H}_3\text{CCOOH} + 2 \text{H}_2 & \rightarrow & \quad \text{H}_3\text{CCOOH} + \text{H}_2\text{O} \\
\text{Acetic Acid} & & & \text{Ethanol}
\end{align*}
\]
Esterification + Hydrogenolysis

Water → Esters → Alcohols

Mixed Alcohols → Heavy Alcohols

Carboxylic Acids

H₂
Esterification + Hydrogenolysis

Water + NH$_3$ → Mixed Alcohols

NH$_4$ Carboxylate Salts → Esters → Alcohols → Heavy Alcohols → H$_2$
Esterification

• Acid catalyzed \((H_2SO_4)\) or solids acid catalysts. Same reaction as free fatty acids esterification in biodiesel production.
Ester Hydrogenolysis

- Copper chromite
 - high temperatures (> 200°C)
 - high pressures (> 600 psi)
 - widely used in industry (e.g., for making detergent alcohols from fatty acids)

- Reduced CuO-ZnO catalyst
 - low temperature (~150°C)
 - low pressure (<350 psi)
 - preferred
Plant Capacity

<table>
<thead>
<tr>
<th>Plant Capacity</th>
<th>(tonne/h)</th>
<th>(mill gal/yr)</th>
<th>*City Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version 1</td>
<td>Version 2</td>
<td></td>
</tr>
<tr>
<td>Base Case</td>
<td>2</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.6</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>30.3</td>
<td>45.1</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>121</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>606</td>
<td>903</td>
</tr>
</tbody>
</table>

* Feedstock = Municipal solid waste + Sewage sludge
Effect of Scale on Capital Cost – Versions 1 & 2

![Graph showing the effect of scale on capital cost. The x-axis represents capacity in tonnes per hour, ranging from 0 to 900, and the y-axis represents capital cost in million dollars, ranging from 0 to 300. The graph shows a linear relationship between capacity and capital cost.]
Mixed Secondary Alcohols (e.g., isopropanol) (Version 1)

<table>
<thead>
<tr>
<th>Biomass Feed Capacity (tonne/h)†</th>
<th>Alcohol Prod'n (million gal/yr)</th>
<th>Estimated Capital Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>$2.65 million</td>
</tr>
<tr>
<td>10</td>
<td>7.6</td>
<td>$7.77 million</td>
</tr>
<tr>
<td>40</td>
<td>30.3</td>
<td>$19.7 million</td>
</tr>
<tr>
<td>160</td>
<td>121</td>
<td>$66.3 million</td>
</tr>
<tr>
<td>800</td>
<td>606</td>
<td>$287 million</td>
</tr>
</tbody>
</table>

Yield = ~ 86 gal/dry ton
Mixed Acid Selling Price
Version 2 (15% ROI)

Biomass Cost ($/tonne)

Capacity (tonne/h)

Acid Selling Price ($/lb)
Carboxylic Acids

<table>
<thead>
<tr>
<th>Biomass Feed Capacity (tonne/h)</th>
<th>Mixed Acid Prod'n (million lb/yr)</th>
<th>Estimated Capital Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18.3</td>
<td>$2.49 million</td>
</tr>
<tr>
<td>10</td>
<td>91.5</td>
<td>$7.31 million</td>
</tr>
<tr>
<td>40</td>
<td>366</td>
<td>$18.6 million</td>
</tr>
<tr>
<td>160</td>
<td>1,460</td>
<td>$63.6 million</td>
</tr>
<tr>
<td>800</td>
<td>7,320</td>
<td>$280 million</td>
</tr>
</tbody>
</table>
Mixed Alcohol Selling Price
Version 2
(15% ROI)
Mixed Primary Alcohols (e.g., ethanol) (Version 2)

<table>
<thead>
<tr>
<th>Primary Alcohols</th>
<th>Biomass Feed Capacity (tonne/h)†</th>
<th>Alcohol Prod'n (million gal/yr)</th>
<th>Estimated Capital Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2.25</td>
<td>$2.65 million</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11.3</td>
<td>$7.77 million</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>45.1</td>
<td>$19.7 million</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>181</td>
<td>$66.3 million</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>903</td>
<td>$287 million</td>
</tr>
</tbody>
</table>

Yield = ~ 130 gal/dry ton
Yield = ~100 gal/dry ton for bagasse
(90% of theoretical)

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Theoretical Yield in gallons per dry ton of feedstock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Grain</td>
<td>124.4</td>
</tr>
<tr>
<td>Corn Stover</td>
<td>113.0</td>
</tr>
<tr>
<td>Rice Straw</td>
<td>109.9</td>
</tr>
<tr>
<td>Cotton Gin Trash</td>
<td>56.8</td>
</tr>
<tr>
<td>Forest Thinnings</td>
<td>81.5</td>
</tr>
<tr>
<td>Hardwood Sawdust</td>
<td>100.8</td>
</tr>
<tr>
<td>Bagasse</td>
<td>111.5</td>
</tr>
<tr>
<td>Mixed Paper</td>
<td>116.2</td>
</tr>
</tbody>
</table>

Source: http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html
Energy Content

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MJ/L)</td>
<td>(Btu/gal)</td>
</tr>
<tr>
<td>Gasoline</td>
<td>34.9</td>
<td>125,000</td>
</tr>
<tr>
<td>Mixed Alcohols</td>
<td>29.0</td>
<td>104,000</td>
</tr>
<tr>
<td>Version 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Alcohols</td>
<td>26.5</td>
<td>95,000</td>
</tr>
<tr>
<td>Version 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>23.4</td>
<td>84,300</td>
</tr>
</tbody>
</table>
Yield on an ethanol equivalent basis

\[
130 \text{ gal/ton} \times \frac{95,000}{84,300} = 147 \text{ gal/ton}
\]

\(~50\%\) more than enzymatic/ethanol fermentation route
Conclusions

• The technology is
 - “green”
 - profitable
 - world-wide
 - simple
• Many potential products
 - ketones
 - alcohols
 - organic acids
Conclusions

- **Near-term applications**
 - waste \rightarrow chemicals
- **Mid-term applications**
 - waste \rightarrow fuels
- **Far-term applications**
 - crops \rightarrow fuels
Thank you for your time and attention