SOUTHERN RESEARCH ENGINEERING

Capabilities Briefing

2010
Engineeering Division

- Advanced Materials Research and Characterization
- Electromechanical Systems Design and integration
- Environment and Energy Research

132 Engineering Employees

- BS
- MS
- PhD
- Technical Support

- 4 Locations in Alabama
 - Birmingham (2), Huntsville, and Wilsonville
 - Durham, North Carolina
Systems Development Department
Electro-Mechanical Systems

- Design, Modeling, Fabrication, Integration, Test and LRIP Production Capabilities
- Stabilized Platforms
 - EO/IR Seekers
 - Scanning Mirror Assemblies
 - Gimbals--- 5” to 33”; 2, 3, or 4 axes
- Servo Controller Electronics Design
Imaging Systems and Targeting

- Visible and IR image processing
- Real-time contrast enhancement
- Cueing
- Video trackers
 - VME-based CCAs
 - PC-based
 - HDTV Video Tracker
- Inertial pointing and target geo-location extraction
Systems Integration - pods

• Aircraft integration
 – Experience on multiple platforms
 – Fixed/rotary wing
 – Low-speed/supersonic
 – Turnkey systems
 – User-configurable payloads

• Sensor Integration
 – Mechanical Packaging
 – Electronics Development/Support
Systems Integration – Large Multi-axis Turrets

- Multi-sensors compatibility
- Readily configured for various payloads
- Large collection apertures
- Longer focal length lens capability
Airborne Imaging and Recording System (AIRS)

- System design and development
- Pre/post mission support
- New sensor package development
- Can be used for persistent surveillance
- Geo-location extraction
WB57
Various Payloads for AIRS

WAVE

Tsunami

WAVE II

NEHI-ORANGE

NCAM

ATOMMS
Sample Imagery 50K’ Alt.
Sample Imagery 50K’ Alt.
Mechanics and Materials Research
Mechanical, Thermal, and Physical Properties Characterization

- Mechanical and Subscale Structural Testing
 - Cryo (-260°C) to Elevated (3030°C) Temps

- Thermal Properties and Analysis Testing
 - Cryo (-260°C) to Elevated (3030°C) Temps

- Physical Properties
 - Permeability, Porosity, Chemistry, Microscopy, Moisture Properties, Density, etc.

- Non-Destructive Evaluation
 - Radiography, CT, Ultrasonics, Resistivity, Eddy Current
Mechanics and Materials Research

- Missile Defense
- Aero Propulsion
- Composite Flight Hardware
- Test Technology Development
Mechanics and Materials Research

- Hypersonic Vehicles - Prompt Global Strike
 - Ground testing
 - Material characterization
 - Aero-Thermal modeling

- NASA’s Heavy Lift Programs
 - Builds on our Shuttle program legacy
 - Advanced propulsion and heatshield materials
Ground Testing for Hypersonics

- Supports AF, Navy and Army in Ground Test Evaluations of Candidate Materials and Shapes

- Thermal Protection Materials Ground Test Experience / Improvements AEDC arcs HEAT-HR, -H1, -H2, -H3
 - AEDC Tunnels A, B, 9 and DET
 - AEDC Ballistic Range
 - NASA-Ames IHF and AHF Arcs
 - Boeing LCAT Arc
 - USAF LHMEL Laser

- Post-Test Analyses
 - define sample boundary conditions
 - evaluate material ablative/thermal performance
Strain Field Visualization

• Non-contact method of measuring shape & strain on surface of material
• Obtain strain distribution instead of only single value
• Visualize how strain changes with increased load, temperature, etc.
Hypersonic Vehicles
Large Structures Testing

• Facilities
 – 10’x10’x12’ high load frame
 – multi-axis servo-hydraulic
 – 100+ channels data acquisition

• Test Engineering
 – SLT planning and coordination
 – Test fixture design and fabrication
 – Specimen prep and instrumentation
 – Data reduction and reporting
Environment and Energy
Environment and Energy
North Carolina Overview

• Established in 1991
• ~50 Staff
 – Engineers (BS to PhD)
 – Scientists and chemists
 – Technicians & mechanics
 – Administrative staff

• Facilities
 – 42,000 ft² of office, R&D prototyping, & lab space
 – Technology field deployment/performance verification teams and equipment

• Clients
 – Industry, government, technology implementers & developers
Environment and Energy - North Carolina

• Technology Development & Deployment Support
 – Prototype & pilot advanced energy & fuel mfg. technology
 – Manage commercial demo's of energy & transport technologies
 – 3rd party performance testing
 – Technical feasibility assessment
 – Assessment of technology deployment strategies

• Industries and Technology Areas
 – Advanced energy and transportation devices: bioenergy, biofuels, waste-to-energy, distributed power, co-gen...
 – Fossil fuel production and distribution: coal, oil, gas
 – Greenhouse gas mitigation, criteria pollutant mitigation
Recent Energy Technology Research & Development Efforts

- Biomass to clean diesel, alcohol, or sugar using two biorefinery pilot plants (thermochemical, hydrolysis)
- New biomass/coal feeder for advanced power production facilities
- Advanced hot syngas cleaning reactor for biomass
- CO$_2$ & MSW to with gasification
Clean Energy Technology Development Center *(Durham, NC)*
Recent Small-Scale Technology Deployment Efforts

- Five different fuel cells: a private home, two commercial sites, two waste sites
- New fuels and additives for mine vehicles and locomotives
- Two farm manure waste-to-energy systems coupled to microturbines & advanced engines
- Geothermal water heater at a commercial businesses
- Zero emission natural gas wellhead gas sweetening unit
Recent Moderate-Scale Technology Deployment Efforts

• Project Description
 – Plan for and install a system to capture and utilize extremely low energy landfill methane gas to produce power, eliminate flaring and reduce emissions
 – Perform independent third party performance verification of the integrated system (technology and economic performance)
 – Client: DoD, Fort Benning, GA

• Technology Description
 – Flex-Microturbine®, a unique power plant that generates electricity from gases with heat contents of 15 BTU per cubic foot.
Recent Moderate-Scale Technology Deployment Efforts

• Project Description
 - Plan for and install a solar driven chiller to provide cooling and hot water for a food service operation
 - Perform independent third party performance verification of the integrated system (technology and economic performance)
 - Client: DoD, Parris Island, SC

• Technology Description
 - Integrated hot water solar panels and high efficiency adsorption chiller system
NYSERDA Clean Diesel Technology
Field Demonstration Program

- Provide assessments of the *in-use performance* of commercially available *diesel retrofit control technologies* to expand energy-efficient diesel emission control technology options for off-road applications in New York State.
Environment and Energy – Alabama Operations

Power Systems Research Group
- Combustion Research Facility and Lab-Scale Gasifier
- Catalyst Test Facility & Development Lab
- Fossil Fuels, Biomass, and Flyash Analyses

Environmental Services Group
- Precipitator, Baghouse, Scrubber Evaluations
- SCR Studies, Analytical Services, Electrical Resistivity
- Water/Wastewater Analysis and Remediation

National Carbon Capture Center (Wilsonville)
- CO₂ Capture Research (Pre- and Post-Combustion)
- Hot-Gas Cleanup Research
- On-Site Analytical Support
Biomass Testing for Co-Firing and Coal Replacement

- New and potential regulations have increased interests in biomass for power generation.
- Canadian utilities required to convert from coal to 100% biomass or shut down plants.
- Ability to store, mill, and burn fuel and control alkali metals are critical issues being addressed.
- Projects with EPRI, OPG, Vendors, and other utilities.
Oxy-Firing for CO₂ Mitigation

- Retrofit for existing coal-fixed power stations
- Minimized capital expenditure
- Staged-oxygen burners – moderate heat release, provide stable flame, and reduce NO

- Oxygen Introduced at burner
- Pure CO₂ in exhaust stream
- CO₂ – sequestration technologies

MAXON Corporation Oxy-Burner with flue-gas recycle at Southern Research

Flue-gas recycle loop
Capabilities with Sorbents and Catalysts

• Sorbent/Catalyst Development
 — Grinding, solution preparation, precipitation, precipitate recovery, and drying
 — Activate catalysts by reduction in H₂, CO, etc
 — Spray dryer for small-pilot-scale production

• Sorbent/Catalyst Characterization
 — PSD, surface area, porosity, pore-size distribution
 — SEM/EDX
 — TGA, DSC, and DTA for studies of reactivity
 — Hot-stage, environmental SEM to observe reactions on and in particles

• Sorbent/Catalyst Evaluation
 — Reactivity studies with controllable synthetic gas mixtures
 — Real-time gas analysis by GCMS/FTIR/GC
 — Injection of sulfur compounds, halides, and trace metals to study poisoning
Environmental Field Services

• Field evaluation of NO\textsubscript{x} control, Hg oxidation, and SO\textsubscript{3} formation.
 — Effect of SCR on mercury oxidation.
 — SO\textsubscript{3} formation in boilers.
 — Long-term baghouse monitoring program.

• Highly-regarded studies of fly ash properties.
 — First demonstration of method for recreating particle-size distributions.

• Unique capabilities in scrubber mist eliminator evaluation using SRI-developed video droplet analyzer.
Vapor-Phase Mercury Measurement

QSISTM Probe and Gas Conditioning System

Mercury Monitor and Spike Source
Water & Wastewater Treatment

Remediation Steps

1. Determination of the chemical and physical constituents in effluents.
2. Determination of problematic constituents.
3. Remediation strategies for the identified problematic constituents.
 - Bench, Bucket, Pilot and Full-scale testing
Water & Wastewater Treatment

Capabilities at Southern Research

• Remediation of Problematic Constituents
 – Selenium
 – Mercury
 – Arsenic
 – Nitrogen forms
 – Biochemical oxygen demand

• Analytical Methods
 – Total inorganic analyses (ICP-ORS-MS)
 – Speciation of Selenium and Mercury
 – Water Chemistry Parameters
Backup Slides
Materials Characterization

- Materials Characterization is the core technology of Southern Research Engineering Division
- Key technical developments date to mid 1950’s
 - Gas Bearing Tensile (IR100)
 - 5500°F (3030°C) furnace for general use
 - 6500°F (3590°C) furnace for special applications
- Developments driven by high temperature, brittle material applications
 - Reentry
 - Planetary reentry
 - Nuclear
 - Launch Vehicles
 - Aeropropulsion
Mechanical Property Measurements

- Full Range of Properties
 - Tension
 - Compression
 - Shear
 - Shear
 - Fatigue
 - Fatigue
 - Creep
- Cryogenic to 5500° F
- Inert, Air, Environmental Conditioning etc.
- >40 Facilities,
- Hundreds of Set-ups
 - Extensive experience in testing composites, brittle materials and other materials with unusual behaviors
 - Development of tests techniques appropriate for these materials and environments
Mechanical Property Measurements

- **Specialized Testing Capabilities**
 - Gas Bearing Tension, Compression and Torsion (to 5500°F)
 - Cryogenic Tension and Compression (-440° in Dev.)
 - High Temperature Ring Tests (to 5000°F)
 - Tension
 - Compression
 - Oxidative Fatigue (Cryogenic to 3000°+)
 - Yarn/Fiber/Wire Tensile/Creep tests (to 5500°F)
 - Microyield (f/°T)
 - Tensile/Compressive Creep in Air (to 3000°F)
 - Thermal Stress Testing
 - Biaxial Flexure and Torsion
 - Restrained Thermal Growth (coupon and ring)
 - Rail, Saddle and Iosepescu shear
Thermal Property Measurements

- **Thermal Conductivity Testing**
 - Comparative Rod Apparatus - Cryo to 2000° F
 - Radial Inflow Apparatus - 1500 to 5000° F
 - Pulse Laser Thermal Diffusivity - RT to 3000° F
 - Modified C-177 Guarded Hot Plate

- **Thermal Analysis Testing**
 - Nietze 404 DSC - RT to 2600°
 - Adiabatic Calorimetry
 - Ice Calorimetry
 - TA DSC
 - TA DMA
 - TA TGA
 - SRI TGA - RT to 2000° (3600°/min), O₂, Multi - gm samples
Thermal Property Measurement Capabilities

Specialized Testing Capabilities

- Cryocoolers for cryogenic properties
- Thermal conductivity under load.
- **Vacuum thermal response measurements**

ATMOSPHERIC PRESSURE TO VACUUM
TEMPERATURE OVER 3000 DEGREES (4500)
Thermal Property Measurements

- Thermal Expansion Facilities
 - NIST Quartz Dilatometers (Cryo to 1800° F)
 - Horizontal Quartz Dilatometers (Cryo to 1800° F)
 - Graphite Dilatometers (RT to 5000° F)
 - Optical Thermal Expansion (RT to 5000° F)
 - Precision Thermal Expansion (20 K to 400 K)
 - Ring Thermal Expansion (RT to 5000° F)

- Analog
 - Simulation Facility
 - LHMEL (USAF)
 - Quartz Lamps
 - Oxyacetylene Torch

- Total Normal Emmissivity
Thermal Property Measurements

- Thermal Properties Testing
 (-440° F to 5500° F)
 - Thermal Conductivity
 - Thermal Diffusivity
 - Thermal Expansion
 - Specific Heat
- Thermal Analysis Testing
 - TGA
 - DSC
- Analog Facilities
- Thermal-optical
- Physical
- Mass Flow
Radiant Facility II

- Infrared heat source by Research, Inc.
- Up to 12 x 9” heated area
- Up to fifteen 2000 W / 240 V bulbs
- Water-cooled, polished aluminum reflector
- Capable of temperature or flux control
- Data logging with Agilent 34970A and Labview
- Horizontal
New Ultrasonic Spectroscopy Technique

- Rapidly Swept Wave
- Entire Waveform Digitized
- FFT of Sweep Gives Flat Spectrum
- Bandwidth and Amplitude User Defined

![Graph showing Normalized Input Spectrum for 0.5 to 2.25 MHz]

Normalized Input Spectrum for 0.5 to 2.25 MHz Compared to Traditional Broadband Input Spectrum

Ultrasonic Spectroscopy Modes of Interaction

- Attenuation as a Function of Frequency
- Dispersion/Defect Interaction
- Resonance
Other Measurement Capabilities

- **Permeability**
 - Ambient to 3500° F
 - High Pressure (incl. H₂)
 - Effect of loads

- **Porosity**
 - Hg porosimetry
 - He Pycnometry
 - Liquid Absorption

- **Microscopy**
 - SEM
 - Optical

- **Chemistry**
 - Resin Content
 - Wet chemistry as required
Non-destructive Characterization

- Radiography
 - Collimated
- Computed tomography
- Ultrasonics
 - Velocity
 - Pulse echo
 - Attenuation
- Electrical resistivity
- Eddy current
- Metrology

- Defect detection
- Material identification
- Material fingerprinting
- Physical properties
Precision Metrology

- **Ordered Scanner**
 - Measures Z height along an X-Y grid
 - Specular & Diffuse
 - Multiple systems some using confocal and some triangulation
 - 2 mil accuracy

- **Portable CMM**
 - 8 foot Ø measurement volume
 - 1 mil accuracy with hard point probe
 - 3 mil accuracy with laser line scanner