DEPARTMENT OF ECONOMICS WORKING PAPER SERIES

Intensive and Extensive Margins of Labor Supply in HANK: Aggregate and Disaggregate Implications

Eunseong Ma
Department of Economics
Louisiana State University

Working Paper 2020-05
https://www.lsu.edu/business/economics/files/workingpapers/pap20_05.pdf

Department of Economics
Louisiana State University
Baton Rouge, LA 70803-6306
http://www.lsu.edu/business/economics/
Abstract

This paper focuses on a labor-supply-side story for the monetary transmission mechanism, which has received relatively little attention in the New Keynesian literature. To this end, I develop a heterogeneous-agent New Keynesian (HANK) economy where a nonlinear mapping from hours worked into labor services generates operative adjustment along intensive and extensive margins of labor supply. The model economy quantitatively accounts for the U.S. data, including hours distributions and their transitions, and excels at producing empirically realistic responses of adjustment along both margins to a monetary policy shock. I find that, since the nonlinear mapping breaks the tight link between a curvature parameter and labor supply elasticity, the standard interpretation regarding a New Keynesian Phillips curve may be potentially very misleading from a quantitative perspective. Another important finding is that monetary policy has significantly different effects on earnings inequality, depending on the extent to which margin is dominant, even if it generates similar aggregate responses.

JEL classification: E52, D31, D52, J21

Keywords: Monetary policy; Intensive and extensive margins; Earnings inequality

*I would like to thank Sarah Zubairy, Yoon J. Jo, Joonseok Oh, and seminar participants at Texas A&M University for their valuable comments and suggestions.

†Department of Economics, Louisiana State University, Baton Rouge, LA 70803. e-mail: masilver@lsu.edu.
1 Introduction

The supply side in a labor market has received relatively little attention for accounting for the monetary transmission mechanism in the New Keynesian literature since most of the studies consider intertemporal substitution effects—a consumption-saving decision—of monetary policy as the first-order issue. It is only recently that the importance of the labor market has been explored in the literature on monetary policy. Recent studies, such as Kaplan, Moll and Violante (2018), among others, show that channels in the labor market are of immediate relevance for understanding the monetary transmission mechanism (Gornemann, Kuester and Nakajima, 2016; Coibion et al., 2017; Auclert, 2019; Ma, 2019). However, it is still common in the New Keynesian models to assume a simple labor supply choice for a household. One of the standard assumptions is that a household smoothly adjusts its labor supply, even if recent advances in modeling aggregate labor supply consider adjustment occurring along both intensive and extensive margins (Keane and Rogerson, 2012; Rogerson and Wallenius, 2009; Chang et al., 2019). Of course, it is well-known that the variation in employment is the dominant source of fluctuations in total hours worked (Heckman, 1984), but there remains some disagreement about the relative importance of each margin. Chang et al. (2019), for example, argue that the extensive-margin-only model may be misleading about aggregate responses in the economy, and abstracting from the intensive margin is not a harmless simplification for understanding aggregate labor supply in business cycle settings.

A natural question that has not been asked in the New Keynesian literature is how adjustment along intensive and extensive margins in the presence of market incompleteness influences aggregate and disaggregate effects of monetary policy. The main objective of this paper is to address this question.

To give a concrete answer to the above question, I follow Rogerson and Wallenius (2009) and embed a nonlinear mapping from time devoted to work to labor services in a New Keynesian economy with heterogeneous agents where the nonlinear mapping generates operative intensive and extensive margins of labor supply. The model economy features incomplete asset markets as in

1 Kaplan, Moll and Violante (2018) show that indirect channels far outweigh direct effects (intertemporal substitution effects). Gornemann, Kuester and Nakajima (2016) introduce matching frictions into a heterogeneous-agent New Keynesian economy and find that a majority of households prefer substantial stabilization of unemployment. Auclert (2019) shows that the “earnings heterogeneity” channel plays a crucial role in the monetary transmission mechanism, and Coibion et al. (2017) empirically document this channel using the Consumer Expenditure Survey. Ma (2019) finds that a substantial heterogeneity in labor supply elasticity across households is crucial for accounting for both aggregate and disaggregate effects of monetary policy shocks.
Huggett (1993) and Aiyagari (1994) and conventional assumptions in the New Keynesian literature, including sticky prices, monopolistic competition, and a standard Taylor rule.

The model economy can successfully replicate the salient features of cross-sectional heterogeneity in hours worked, the movement between employment states, and the transitions within the hours distributions, along with income, wealth, and consumption distributions. The model economy also produces empirically realistic responses of aggregate variables, including adjustment along both intensive and extensive margins, to a monetary policy shock.\(^2\)

Having assessed the model’s ability to account for distributions and aggregate responses in the data, I next examine how adjustment along both intensive and extensive margins influences aggregate and disaggregate impacts of monetary policy. The answer to this question depends on the extent to which margin is the dominant margin of adjustment. The relative size of adjustment along intensive and extensive margins is determined by the underlying primitives of the model economy. It is intuitive to think that the curvature parameter mainly determines intensive margin elasticity, while extensive margin elasticity is mostly determined by the degree of heterogeneity. Accordingly, in addition to an economy based on benchmark calibration, I consider two additional counterfactual economies with the different extent of heterogeneity and a different curvature parameter, respectively, where both model economies are calibrated to match the same aggregate steady-state targets and generate the same response of total hours to a standardized monetary policy shock.\(^3\)

As far as the aggregate implications are concerned, one of the main findings is that the non-linear mapping substantially distorts inference regarding the responses of total hours. Even if two economies generate similar aggregate responses, the underlying behaviors—responses of adjustment along intensive and extensive margins—may be totally different. This finding is particularly relevant to monetary policymakers in that understanding and quantifying the sources of aggregate responses is important to determine the most appropriate policies. A second important finding is that a nonlinear mapping from time devoted to work to labor services breaks the tight link between the curvature parameter and the true elasticity of labor supply, which cautions against the standard interpretation regarding the slope of a New Keynesian Phillips curve (NKPC). Since the nonlinear mapping prevents a curvature in preferences over hours of work from representing the true elas-

\(^2\)I find that the employment response is relatively important for accounting for the response of aggregate hours, but the response along the intensive margin plays a non-negligible role. I also provide empirical evidence for this model prediction.

\(^3\)Chang et al. (2019) also consider various specifications that feature different degrees of heterogeneity and a set of values for the curvature parameter.
ticity of labor supply, assuming that the curvature parameter is equal to aggregate labor supply elasticity is potentially very misleading from a quantitative perspective when interpreting the slope of the NKPC. For example, the estimated slope of the NKPC based on a curvature parameter in the benchmark calibration is 25 percent steeper than the true one. Therefore, other underlying primitives, which affect aggregate labor supply elasticity (e.g., the extent of heterogeneity in this paper), should be considered.

In regards to the disaggregate implications, an important finding is that even if two economies generate similar aggregate behaviors in response to a monetary policy shock, the disaggregate effects can be significantly different, depending on the relative size of adjustment along the intensive and extensive margin. In response to an expansionary monetary shock, earnings inequality decreases substantially when the extensive margin is the dominant margin of adjustment, while it may increase in an economy with larger intensive margin adjustment. Hence, the extent to which margin of labor supply is dominant is important for accounting for the distributional effects of monetary policy.

Related Literature

Early studies featuring adjustment along both the intensive and extensive margins (e.g., Kydland and Prescott (1991) and Cho and Cooley (1994)) are based in the context of a representative household. Rogerson and Wallenius (2009) introduce a limited degree of heterogeneity into an economy with adjustment along both the intensive and extensive margins, but there is no aggregate uncertainty in their model. Chang and Kim (2006, 2007) study business cycles issues in the context of heterogeneous households but consider the extensive margin only. The work that is probably closest to this paper is Chang et al. (2019), who introduce intensive and extensive margins of labor supply in heterogeneous agent general equilibrium models to study business cycle fluctuations. Relative to Chang et al. (2019), this paper differs in that the main focus of this study is on accounting for the transmission mechanism of monetary policy rather than business cycles fluctuations.

This paper is related to several in the literature studying the transmission mechanism of monetary policy in the presence of incomplete markets. Auclert (2019) finds that the effects of monetary policy on aggregate consumption tend to be amplified by redistribution channels, such as earnings heterogeneity channels. \footnote{Coibion et al. (2017) empirically documents an earnings heterogeneity channel for the distributional effects of monetary policy.} Kaplan, Moll and Violante (2018) consider two types of assets with different degrees of liquidity and returns in a New Keynesian model with incomplete financial markets.
and show that the indirect channels (general equilibrium effects such as an increase in labor demand) far outweigh the direct effects (intertemporal substitution channels). Werning (2015) also considers heterogeneity and incomplete markets to study the monetary transmission mechanism and finds that indirect effects offset direct channels in the presence of an incomplete market. Gornemann, Kuester and Nakajima (2016) develop a heterogeneous-agent model economy in the context of New Keynesian frameworks, where matching frictions create countercyclical labor-market risk. They find that a majority of households prefer substantial stabilization of unemployment, even if this means deviations from price stability. Ma (2019) considers extensive margins of labor supply in a heterogeneous-agent New Keynesian model where both macro and micro labor supply elasticities are endogenously generated and finds that a substantial heterogeneity in labor supply elasticity across households plays a crucial role in explaining both aggregate and disaggregate effects of monetary policy shocks. The current paper contributes to this literature by incorporating adjustment along both the intensive and extensive margins and emphasizing the role of each margin for the monetary transmission mechanism. To the best of my knowledge, this study is the first to embed adjustment along the intensive and extensive margins in the context of a heterogeneous-agent New Keynesian economy.

The study is organized as follows. Section 2 specifies the benchmark model economy with operative intensive and extensive margins. Section 3 assesses the extent to which the model captures the salient features of the empirical cross-sectional distributions. The extent to which adjustment along the intensive and extensive margin affects aggregate and disaggregate effects of monetary policy is examined in Sections 4 and 5, respectively. Section 6 concludes.

2 Model Economy

In order to study a labor-supply-side story for the monetary transmission mechanism, I develop a New Keynesian economy where heterogeneous agents provide operative extensive and intensive margins of labor supply. The model economy has four building blocks: a continuum of heterogeneous households, the central bank, the government, and firms. Following Rogerson and Wallenius (2009) and Chang et al. (2019), it is assumed that there is a nonlinear mapping from time devoted to work to labor services, which generates operative extensive and intensive margins of labor supply. The model economy features capital-market incompleteness, as in Huggett (1993) and Aiyagari (1994), in that households cannot issue any assets contingent on their future idiosyncratic risks that they
face. For the remaining part of the model economy, I introduce conventional assumptions as in
the New Keynesian literature: nominal prices are sticky; monopolistically competitive firms choose
prices; and a central bank follows a standard Taylor rule.

2.1 Households

There is a unit measure of ex-ante identical infinitely lived households whose mass is normalized
to one. Each household has preference over streams of consumption, \(c_t \), and hours of work, \(h_t \):

\[
\mathbb{E}_0 \left[\sum_{t=0}^\infty \left(\log c_t - \lambda \frac{h_t^{1+1/\gamma}}{1+1/\gamma} \right) \right],
\]

where \(0 < \beta < 1 \) denotes the discount factor; \(\lambda > 0 \) denotes disutility from working; and \(\gamma > 0 \)
is a parameter for a curvature in preferences over hours of work. It is assumed that a household is
endowed with a unit of time in each period.

Households are subject to idiosyncratic labor productivity shocks, denoted by \(e_t \), which follow
a stochastic process with transition probabilities, \(\Phi_t(e'|e) = \text{Pr}(e_{t+1} = e'|e_t = e) \), where the
realizations are independently and identically distributed across households. It is assumed that \(e_t \)
follows an AR(1) process in logs:

\[
\ln e_{t+1} = \rho_e \ln e_t + \varepsilon^e_{t+1}, \quad \varepsilon^e_{t+1} \sim N(0, \sigma_e^2).
\]

In order to operate adjustment along both intensive and extensive margins of labor supply, I
assume a nonconvexity in the mapping from time devoted to work into units of labor services. The
mapping from hours of work into the resulting labor services is assumed such that, if a household
with labor productivity of \(e \) provides \(h \) units of time to firms, it will generate \(g(h)e \) efficiency units
of labor. Thus, the function, \(g(h) \), plays a critical role in the analysis. Following Rogerson and
Wallenius (2009) and Chang et al. (2019), I assume that \(g(\cdot) \) takes the simple form:

\[
g(h) = \max \{ h - \underline{h}, 0 \}, \ h \in [0, 1], \quad (1)
\]

where \(0 < \underline{h} < 1 \). The above functional form implies that hours devoted to market work have
a convex relation with the resulting labor services or labor earnings. One justification for the
nonconvexity is factors such as set-up costs, costs associated with being supervised, and costs associated with the need to coordinate with other workers (Rogerson and Wallenius, 2009; Chang et al., 2019).

Each household faces the budget constraints:

\[c_t + a_{t+1} = w_t g(h_t) c_t + (1 + r_t^a) a_t - T_t + \varphi_t, \]

(2)

and

\[a_{t+1} \geq b. \]

(3)

When a household devotes \(h_t \) units of hours to market work, the resulting wage earnings are \(w_t g(h_t) c_t \), where \(w_t \) is the real wage rate for the efficiency unit of labor. A household should pay a lump-sum tax, \(T_t \) and earns profit income, \(\varphi_t \). Following Huggett (1993) and Aiyagari (1994), I assume that asset markets are incomplete in the sense that individual households cannot issue any assets contingent on their future idiosyncratic risks. A household trades claims to financial assets, \(a_t \), which yields the real rate of return, \(r_t^a \), but trade in these claims is subject to an exogenous borrowing constraint as in Equation 3: the assets holding, \(a_{t+1} \), cannot go below \(b \) at any time. Credit constraints along incomplete asset markets allow monetary policy shocks to affect households differently depending on the level of individual productivity and asset holdings.

Household’s problem It is useful to consider a recursive form for a household’s problem. Define \(x \) and \(X \) as the vectors of individual and aggregate state variables, respectively: \(x \equiv (a, e) \) and \(X \equiv (\mu, \varsigma) \), where \(\mu(x) \) is the type distribution of households, and \(\varsigma \) is an aggregate shock of interest such as monetary policy or total productivity shocks.\(^{5}\) To simplify notation, I suppress time subindices, and variables with primes denote variables in the next period. The value function for a household, denoted by \(V(x, X) \), is defined as:

\[
V(x, X) = \max_{c, a', h} \left\{ \ln c - \lambda \frac{h^{1+1/\gamma}}{1+1/\gamma} + E[V(x', X')] \right\}
\]

\(^{5}\)The measure \(\mu(a, e) \) is defined over a \(\sigma \)-algebra of \(A \times E \), where \(A \) and \(E \) denote sets of all possible realizations of \(a \) and \(e \), respectively.
subject to

\[c + a' = wg(h)e + (1 + r^a)a - T + \varphi, \]

\[a' \geq \frac{b}{\epsilon}, \]

and

\[\mu' = \Gamma(X), \]

where \(\Gamma \) denotes a transition operator for \(\mu \).

2.2 Final Goods Firm

There is a continuum of perfectly competitive final goods firms, which are uniformly distributed on the interval \([0,1]\). The representative final good firm produces a homogeneous output, \(Y_t \), by combining intermediate goods, according to the constant elasticity of substitution technology:

\[Y_t = \left(\int_0^1 y_t(j) \frac{\epsilon - 1}{\epsilon} \right)^{\frac{1}{\epsilon}}, \]

where \(y_t(j) \) is the intermediate good variety \(j \), and \(\epsilon > 1 \) is the elasticity of substitution for intermediate goods. Since final goods firms are perfectly competitive, they take the final good price, \(P_t \), as given. Cost minimization problem for the final good firm, along with the zero-profit condition, implies that the demand for intermediate good \(j \) is given by:

\[y_t(j) = \left(\frac{p_t(j)}{P_t} \right)^{-\epsilon} Y_t \quad \text{with} \quad P_t = \left(\int_0^1 p_t(j)^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}}, \]

where \(p_t(j) \) is the price of the \(j \)th intermediate input.

2.3 Intermediate Goods Firms

There exists a continuum of intermediate goods producers in a monopolistically competitive market, indexed by \(j \in [0,1] \). Each intermediate goods firm produces a different type of intermediate good \(y_t(j) \), following the Cobb-Douglas production function:

\[y_t(j) = z_t k_t(j)^\theta l_t(j)^{1-\theta} - \Delta, \quad (4) \]
where z_t is total factor productivity, $k_t(j)$ is capital, $l_t(j)$ is effective labor, θ is capital income share, and $\Delta \geq 0$ is the fixed cost of production. Capital is assumed to depreciate at rate of δ each period. Total factor productivity, z, follows a stochastic process with transition probabilities $\Phi_z(z' | z) = Pr(z_{t+1} = z' | z_t = z)$ with an AR(1) process in logs:

$$\ln z_{t+1} = \rho_z \ln z_t + \varepsilon^z_{t+1}, \quad \varepsilon^z_{t+1} \sim N(0, \sigma^2).$$

The cost-minimization problem and the same factor prices that the firms face imply that they all have the same capital-labor ratio and real marginal cost, ϕ_t:

$$\frac{k_t(j)}{l_t(j)} = \frac{\theta}{1-\theta} \frac{w_t(j)}{r_t(j)},$$

$$\phi_t = \frac{z_t}{z_t} r_t^\theta(j) w_t(j)^{1-\theta},$$

where $\Xi = (1 - \theta)^{\theta - 1} \theta^{-\theta}$. Nominal prices are sticky in the economy. Nominal price adjustment is subject to a Rotemberg (1982)'s price setting mechanism: each intermediate goods firm, j, faces costs of adjusting price. An intermediate goods firm, j, chooses its price, $p_t(j)$, to maximize expected discounted profits:

$$\max_{p_{t+k}(j)} \mathbb{E}_t \left[\sum_{k=0}^{\infty} \Lambda_{t,t+k} \left(\left(\frac{p_{t+k}(j)}{P_{t+k}} - \phi_{t+k} \right) y_{t+k}(j) - \frac{\Theta}{2} \left(\frac{p_{t+k}(j)}{P_{t+k-1}} - \Pi \right)^2 Y_{t+k} \right) \right],$$

subject to

$$y_t(j) = \left(\frac{p_t(j)}{P_t} \right)^{-\epsilon} Y_t,$$

(5)

where $\Lambda_{t,t+k}$ is stochastic discount factor between t and $t+k$, Π is the steady-state gross inflation, and the parameter, $\Theta > 0$, is the degree of nominal stickiness. The final good firm’s optimization drives the demand for intermediate good, j (Equation 5).

The first-order condition associated with the optimal price along with the symmetric equilibrium condition (i.e., $p_t(j) = P_t$ and $y_t(j) = Y_t$) leads to the following New Keynesian Phillips curve:

$$1 + \frac{\Theta}{\epsilon-1} \left(\Pi_t - \Pi \right) \phi_t \left[\Pi_{t+1} \right] \frac{\Lambda_{t,t+k} \left(\Pi_{t+1} - \Pi \right) \Pi_{t+1} Y_{t+1}}{Y_t},$$

where $\Pi_t = \frac{P_t}{P_{t-1}}$.

9
2.4 Central Bank and Government

2.4.1 Mutual Fund and Central Bank

Households in this economy do not have a portfolio choice. Instead, I assume that a representative mutual fund trades all the assets in the economy. The mutual fund is assumed to determine the price of claims based on representative stockholder’s consumption, which is assumed to be aggregate consumption. Accordingly, the implied stochastic discount factor between t and $t+1$, denoted by $\Lambda_{t,t+1}$, is given by:

$$\Lambda_{t,t+1} = \frac{u_c(C_{t+1})}{u_c(C_t)},$$

where $u_c(\cdot)$ is the marginal utility of consumption, and C_t is the aggregate consumption, i.e.,

$$C_t = \int c_t(x_t, X_t) d\mu_t.\quad 6$$

I abstract public-sector debt or cash in the economy and follow the cashless limit assumption widely used in the context of New Keynesian economies, such as Woodford (1998) and Gornemann, Kuester and Nakajima (2016) among others. The central bank sets nominal gross interest on risk-free bonds, R_t. The optimal bond investment decision of the mutual fund implies a standard Euler equation:

$$E_t \left[\Lambda_{t,t+1} \frac{R_t}{\Pi_{t+1}} \right] = 1. \quad (6)$$

The central bank conducts monetary policy following a standard Taylor rule:

$$\frac{R_t}{\bar{R}} = \left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\phi_\pi} \left(\frac{Y_t}{\bar{Y}} \right)^{\phi_y} v_t, \quad (7)$$

where $\phi_\pi > 1$ and $\phi_y \geq 0$ are the reaction coefficients to inflation and the output gap, and \bar{R}, $\bar{\Pi}$, and \bar{Y} are the steady-state values of the corresponding variables. v_t is monetary policy shocks, which follow an AR(1) process in logs with transition probabilities, $\Phi_v(v'|v) = Pr(v_{t+1} = v'|v_t = v)$:

6Gornemann, Kuester and Nakajima (2016) have a bit different assumption. They assume that the mutual fund claims are priced based on the asset-weighted average of its shareholders’ period-to-period valuation.

7Equation 6 implies that the stochastic discount factor of the mutual fund affects the pricing of other assets. An unexpected change in the nominal risk-free rate under the sticky price affects the expected real rate of return, thereby affecting all other decisions in the economy.
\[
\ln v_{t+1} = \rho v \ln v_t + \varepsilon^v_{t+1}, \quad \varepsilon^v_{t+1} \sim N(0, \sigma_v^2).
\]

2.4.2 Government

Markups and profits are countercyclical in model economies of monopolistic competition with sticky prices only, which is counterfactual (e.g., Christiano, Eichenbaum and Evans (2005)). To avoid the counterfactual implications of the sticky price, I assume that the government takes all the profits from intermediate-goods firms and spends them as government consumption (Ma, 2019).\(^8\) This means that profit income that households earn is zero, i.e., \(\varphi_t = 0\). Without loss of generality, I also assume that lump-sum taxes are also zero, i.e., \(T_t = 0\). Accordingly, we have the following government budget constraint:

\[
\xi_t = G_t,
\]

where \(\xi_t\) is monopoly profits net of price adjustment costs, and \(G_t\) is government spending. By having this assumption, I abstract the wealth effects associated with countercyclical profits on labor supply decisions of households.

2.5 Definition of Equilibrium

A recursive competitive equilibrium is a value function \(V(x, X)\), a set of prices \(\{w(X), r^a(X), R(X), \Pi(X)\}\), a set of policy functions \(\{c(x, X), a'(x, X), h(x, X), k_j(X), l_j(X), p_j(X), y_j(X)\}\), and a transition operator \(\Gamma(X)\) such that:

1. Households optimize: given \(w(X)\) and \(r^a(X)\), optimal decision rules \(c(x, X), a'(x, X), \text{and } h(x, X)\) solve the value function, \(V(x, X)\).

2. Intermediate goods firms optimize: given \(w(X), r^a(X), \Lambda(X, X'), \text{and } P(X)\), the associated optimal decision rules are \(k_j(X), l_j(X), \text{and } p_j(X)\).

3. Final goods firm optimizes: given a set of prices \(P(X)\) and \(p_j(X)\), the associated optimal decision rules are \(y_j(X)\) and \(Y(X)\).

4. The stochastic discount factor, \(\Lambda(X, X')\), satisfies \(\mathbb{E} \left[\Lambda(X, X') \frac{R(X)}{\Pi(X)} \right] = 1\).

5. The gross nominal interest rate, \(R(X)\), satisfies the Taylor rule (Equation 7).

\(^8\)See Ma (2019) for further discussions about how the monetary policy transmission varies according to the distribution of countercyclical profits.
6. The government runs a balanced budget: $\xi(X) = G(X)$.\(^9\)

7. All markets clear: for all X,
 - Labor market clears: $L(X) = \int g(h(x,X))d\mu$, where $L(X) = \int l_j(X)d\mu$
 - Capital market clears: $K(X) = \int ad\mu$, where $K(X) = \int k_j(X)d\mu$
 - Goods market clears: $Y(X) = C(X) + I(X) + G(X) + \Omega(X)$ where $Y(X) = zK(X) - \Delta, C(X) = \int c(x,X)d\mu, I(X) = K'(X) - (1 - \delta)K(X)$, and $(X) = \frac{\delta}{2}(\Pi(X) - \Pi)^2Y(X)$.

8. Individual and aggregate behaviors are consistent: for all $A^0 \subset A$ and $E^0 \subset E$,
 $$\mu'(A^0, E^0) = \int_{A^0,E^0} \left\{ \int_{A,E} 1_{a' = a'(x,X)}d\Phi(x')d\mu \right\} da'de'$$

2.6 Calibration

In this subsection, I discuss a simple calibration procedure that is used to assign all the parameters in the economy. As is standard in the business cycle literature, a simulation period is a quarter in the model. Table 1 summarizes the parameter values used in the model economy.

Regarding estimated processes for idiosyncratic productivity shocks, existing studies in the literature consistently report that the shocks are large and persistent. I set $\hat{\rho}_e = 0.939$ and $\hat{\sigma}_e = 0.287$, following Chang, Kim and Schorfheide (2013). The borrowing limit, b, is set to -1.0, which is approximately double the quarterly average earnings in the model economy.\(^10\)

Parameter values for production are standard. The Cobb-Douglas parameter, θ, is set to 0.33, and the quarterly depreciation rate, δ, is calibrated to be 2.5 percent. Total factor productivity, z, is fixed at one. The fixed cost, Δ, is set to ensure that profits are zero in the steady state, implying that entry is ruled out. The elasticity of substitution across intermediate goods, ε, is chosen to be 10, and this implies that a steady-state markup is 11 percent. The Rotemberg price adjustment parameter, Θ, is set to 100. With this value, firms update their price every 4 quarters on average, given the choice of the elasticity of substitution.\(^11\)

\(^9\) $\xi(X)$ is profits net of price adjustment costs, i.e., $\xi(X) = Y(X) - w(X)L(X) - (r^s(X) + \delta)K(X) - \frac{\delta}{2}(\Pi(X) - \Pi)^2Y(X)$.

\(^10\) This is consistent with the empirical findings in the literature. See Chang, Kim and Schorfheide (2013) for a detailed discussion.

\(^11\) Given a Calvo parameter ϕ, the parameter for price adjustment costs, Θ, can be computed such that: $\Theta = \frac{\phi(\varepsilon - 1)}{(1 - \phi)(1 - \varepsilon)^2}$.
Table 1: Parameters of the Model Economy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Source/Target Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOUSEHOLDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>0.114</td>
<td>Extensive margin for hours worked</td>
<td>Average hours worked</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>14.5</td>
<td>Disutility parameter</td>
<td>Employment rate</td>
</tr>
<tr>
<td>(\rho_e)</td>
<td>0.939</td>
<td>Persistence of (e) shocks</td>
<td>Chang, Kim and Schorfheide (2013)</td>
</tr>
<tr>
<td>(\sigma_e)</td>
<td>0.287</td>
<td>Standard deviation of (e) shocks</td>
<td>Chang, Kim and Schorfheide (2013)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>-1.0</td>
<td>Borrowing limit</td>
<td>See text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.33</td>
<td>Capital income share</td>
<td>Standard</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.025</td>
<td>Capital depreciation rate</td>
<td>Standard</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>0.0882</td>
<td>Production fixed cost</td>
<td>Zero profit</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>10</td>
<td>Elasticity of substitution</td>
<td>11% markup</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>100</td>
<td>Price adjustment cost</td>
<td>See text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONETARY AUTHORITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi_\pi)</td>
<td>1.5</td>
<td>Weight on inflation</td>
<td>Standard</td>
</tr>
<tr>
<td>(\phi_y)</td>
<td>0.25</td>
<td>Weight on output</td>
<td>Standard</td>
</tr>
<tr>
<td>(\Pi)</td>
<td>1.005</td>
<td>Steady state gross inflation</td>
<td>Standard</td>
</tr>
<tr>
<td>(\bar{\Pi})</td>
<td>1.027</td>
<td>Steady state gross nominal interest</td>
<td>See text.</td>
</tr>
<tr>
<td>(\rho_v)</td>
<td>0.7</td>
<td>Persistence of (v) shocks</td>
<td>Standard</td>
</tr>
<tr>
<td>100 \times \sigma_v</td>
<td>0.25</td>
<td>Standard deviation of (v) shocks</td>
<td>Standard</td>
</tr>
</tbody>
</table>

For the monetary policy shocks, I choose \(\rho_v = 0.7\) and \(\sigma_v = 0.0025\).\(^{12}\) Regarding the Taylor rule coefficients of inflation and output gap, I set \(\phi_\pi = 1.5\) and \(\phi_y = 0.25\). These are standard values in the New Keynesian literature. The deterministic gross inflation, \(\bar{\Pi}\), is set to target an inflation rate of 2 percent annualized, and then the deterministic value of gross interest rate, \(\bar{R}\), is chosen to satisfy Equation 6 in the steady state.\(^{13}\)

There are four additional parameters to calibrate: \(\phi_\pi\), \(\phi_y\), \(\lambda\), and \(h\). The large literature has sought to estimate the curvature parameter, \(\lambda\). As discussed in Chetty (2012) among others, it was conventional wisdom that an empirically reasonable value for \(\lambda\) falls between 0 and 0.5. However, Keane and Rogerson (2012) argue that Chetty abstracts from additional factors that would suggest higher values of the curvature parameter, \(\lambda\). Rogerson and Wallenius (2013, 2016) also provide

\(^{12}\)Given the value of standard deviation, \(\sigma_v\), the annualized size of a typical monetary policy shock is 100 basis points.

\(^{13}\)A choice of a set of \(\Pi\) and \(\bar{R}\), which satisfies the condition, \(\bar{R} = \bar{\Pi}/\phi_\pi\), does not affect the qualitative results of the model.
Figure 1: Lorenz Curves for Unconditional Hours and Hours Conditional on Working

Note: The left figure shows the Lorenz curves of hours for both employed and non-employed households (unconditional hours), and the right figure shows the Lorenz curves of hours conditional on working. The solid lines represent the model economy, while the dotted lines show the U.S. data (1984 PSID). Units are annual hours in the data and the model. In both data and model, a household is classified as employed if it devoted positive hours to market work during the year.

Evidence that values of α are larger than the conventional micro values. For this reason, I choose $\alpha = 1$, but I will consider a case that $\alpha = 1.5$ for a counterfactual analysis.\footnote{Chang et al. (2019) use a wide range of values of α, going from 0.25 to 1.5, and they use the case that $\alpha = 1$ as a benchmark when reporting the various model results.}

Given the value of α and the previous choices of other parameters, the time discount factor, γ, the disutility parameter of working, λ, and the nonconvexity parameter, h, are chosen so that quarterly return to capital is one percent (4 percent annualized), the employment rate is 70 percent, and average hours (conditional on working) are 1/3, respectively.

3 Cross-sectional Distributions

In this section, I compare some important cross-sectional distributions of the steady-state equilibrium in the model with the U.S. data. The main goal of this section is to examine if the model economy generates many empirical features of the heterogeneity in wealth, income, consumption, and hours worked. It is important to reasonably replicate hours distributions and their transitions as a means to an end for this study.

I first examine the extent to which the model economy can successfully generate distributions of time devoted to work among households. The primary source of information on hours distributions is the Panel Study of Income Dynamics (PSID), and it is based on annual measures. Accordingly,
Table 2: Hours Distributions (Ranked by Hours)

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Unconditional Hours</td>
<td>0.00</td>
<td>9.88</td>
<td>24.61</td>
<td>28.26</td>
<td>37.24</td>
<td>0.39</td>
</tr>
<tr>
<td>Share of Conditional Hours</td>
<td>7.61</td>
<td>18.01</td>
<td>20.92</td>
<td>23.16</td>
<td>30.30</td>
<td>0.22</td>
</tr>
<tr>
<td>Model Economy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Unconditional Hours</td>
<td>0.12</td>
<td>12.33</td>
<td>24.69</td>
<td>28.60</td>
<td>34.26</td>
<td>0.35</td>
</tr>
<tr>
<td>Share of Conditional Hours</td>
<td>8.30</td>
<td>17.95</td>
<td>21.76</td>
<td>23.65</td>
<td>28.34</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Note: The table shows distributions of hours, ranked by hours. Unconditional hours denote hours for both employed and non-employed households, while conditional hours denote hours conditional on being employed. Information for hours is from the PSID 1984. Units are annual hours in the data and the model.

I compute hours of work in the model at the annual level as well to be consistent with the data. In both the data and the model, a household is defined as an employed worker if it provided positive hours during the year.

Figure 1 exhibits the Lorenz curves of annual hours distributions from the model economy and the U.S. data (1984 PSID). The left panel shows the Lorenz curves of unconditional hours (hours for both employed and non-employed households), while the right panel depicts the Lorenz curves of hours conditional on working. The model does a good job of accounting for both dimensions of hours distributions. The Gini coefficient for unconditional hours is 0.39 in the PSID, which is similar to that (0.35) in the model economy (See Table 2). The model and the PSID exhibit similar heterogeneity in hours worked conditional on working. The Gini index of the model is 0.19, which is close to the data (0.22).

Table 2 summarizes the more detailed information on distributions of unconditional and conditional annual hours of work from the PSID and the model. Households in the lowest hours quintile devote zero hours to market work in the data and a very small portion of total hours in the model, respectively, while households in the top quintile provide 37.24 percent and 34.26 percent of total hours in the data and the model, respectively. As far as the distribution of hours worked for employed households is concerned, in both data and model economy, households in the first quintile provide hours less than 10 percent of total hours, and the share of hours worked for the fifth quintile is around 30 percent.

15I use the 1984 PSID survey because it falls in the midpoint of the sample period of the PSID that is used by Chang, Kim and Schorfheide (2013) to estimate processes for idiosyncratic productivity shocks.
I next assess the model’s ability to replicate the distribution of individuals across different combinations of employment states and the transition of households within the distribution of hours worked. Table 3 summarizes the movement between employment states between years $t-1$ and t for the model economy and the PSID. The model economy reasonably replicates transitions into and out of employment. For example, the probability of being employed this year conditional on being employed in the previous year in the PSID is 0.77, which is like that in the model economy (0.75). The model economy has a similar share of households who do not change the non-employment status between consecutive years compared to the U.S. data: the persistence of non-employment is 0.16 in the data, while it is 0.13 in the model.

I also discuss the movement of individuals within the distribution of hours worked. Table 4 reports the transition matrices for annual hours of work conditional on being employed in consecutive years in the PSID and the model economy. The model economy does a good job of accounting for the transition of households within the distribution of hours worked. The model economy replicates considerable persistence of annual time devoted to work well: all of the diagonal elements are relatively large compared to off-diagonal values, and persistence is relatively large, especially for households with high hours worked. Although hours of work are somewhat less persistent in the model than in the data, the patterns are similar.

I next examine whether the model economy produces reasonable heterogeneity in wealth, income, and consumption across individual households. Table 5 compares the detailed information on income, wealth, and consumption in the U.S data to the model economy. The income distribution in the model economy is somewhat more concentrated compared to the data: the model economy makes the wealth Gini index about 0.59, while it is 0.52 in the U.S. data. The model economy reasonably replicates the wealth distribution of the U.S., making the wealth Gini index of 0.71, which is a bit smaller than the data (0.76). Consumption inequality is also well-reproduced by the
Table 4: Hours Transitions Conditional on Working

<table>
<thead>
<tr>
<th></th>
<th>U.S. Data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Model Economy</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>t−1</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
</tr>
<tr>
<td>1st</td>
<td>0.664</td>
<td>0.176</td>
<td>0.104</td>
<td>0.056</td>
<td>1st</td>
<td>0.468</td>
<td>0.345</td>
<td>0.103</td>
<td>0.084</td>
</tr>
<tr>
<td>2nd</td>
<td>0.161</td>
<td>0.551</td>
<td>0.214</td>
<td>0.074</td>
<td>2nd</td>
<td>0.211</td>
<td>0.369</td>
<td>0.261</td>
<td>0.159</td>
</tr>
<tr>
<td>3rd</td>
<td>0.083</td>
<td>0.252</td>
<td>0.471</td>
<td>0.194</td>
<td>3rd</td>
<td>0.080</td>
<td>0.165</td>
<td>0.497</td>
<td>0.258</td>
</tr>
<tr>
<td>4th</td>
<td>0.048</td>
<td>0.076</td>
<td>0.198</td>
<td>0.678</td>
<td>4th</td>
<td>0.131</td>
<td>0.173</td>
<td>0.175</td>
<td>0.531</td>
</tr>
</tbody>
</table>

Note: The table shows distributions of annual hours transitions across four groups (hours quartiles). Data source: Chang et al. (2019).

Table 5: Three Key Distributions

<table>
<thead>
<tr>
<th>Quintile</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Income</td>
<td>0.30</td>
<td>6.58</td>
<td>13.59</td>
<td>25.91</td>
<td>51.83</td>
<td>0.52</td>
</tr>
<tr>
<td>Share of Wealth</td>
<td>-0.44</td>
<td>1.64</td>
<td>6.46</td>
<td>15.51</td>
<td>76.86</td>
<td>0.76</td>
</tr>
<tr>
<td>Share of Consumption</td>
<td>6.81</td>
<td>11.99</td>
<td>16.62</td>
<td>22.98</td>
<td>41.70</td>
<td>0.35</td>
</tr>
<tr>
<td>Model Economy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Income</td>
<td>1.89</td>
<td>5.26</td>
<td>9.99</td>
<td>19.50</td>
<td>63.37</td>
<td>0.59</td>
</tr>
<tr>
<td>Share of Wealth</td>
<td>-2.34</td>
<td>0.90</td>
<td>8.10</td>
<td>22.24</td>
<td>71.11</td>
<td>0.71</td>
</tr>
<tr>
<td>Share of Consumption</td>
<td>5.65</td>
<td>11.25</td>
<td>16.61</td>
<td>23.90</td>
<td>42.59</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Note: Information for income and wealth in the data are from PSID 1984, while statistics for consumption is the Consumer Expenditures Survey (CEX) for the period of 1984.

From various analyses in this section, I can conclude that the model economy can successfully replicate the salient features of cross-sectional heterogeneity in hours worked, the movement between employment states, and the transitions within the hours distributions, along with reasonable income, wealth, and consumption distributions.

4 Aggregate Implications

4.1 Aggregate Impulse Responses

In this section, I discuss the responses of key aggregate variables in the model economy to monetary policy shocks. Figure 2 exhibits the effects of an expansionary one-standard-deviation (100-basis-
Figure 2: IMPULSE RESPONSES OF AGGREGATE VARIABLES
Note: Impulse response to a 100-basis-point (annualized) monetary policy shock. For output, consumption, investment, hours, real marginal costs, and real wages, the y axis shows percent changes, while, for the remaining variables, the y axis shows changes in annualized percentage points. The x-axis shows quarters after the shock.

The impulse response of all the aggregate variables in the model economy look very similar to those of empirical studies in the literature such as Christiano, Eichenbaum and Evans (2005), among others. As in standard New Keynesian models, the main mechanism of an unexpected monetary expansion on economic activity is through the countercyclical markups. Due to nominal price rigidity, an expansionary monetary policy shock lowers markup of intermediate goods firms. A rise in wages by 0.52 percent on impact due to an increase in labor demand allows households to devote more hours to market work: aggregate hours increase by 0.54 percent on impact. A rise in hours worked increases output: output rises by 0.43 percent after an unexpected monetary expanding. A fall in the real interest rate for risk-free bonds along with a rise in the real asset return leads households to increase their consumption and accumulate more assets. Therefore, consumption and investment rise by 0.13 and 4.3 percent, respectively. Finally, an expansionary one-standard-deviation monetary policy shock increases annualized inflation by 0.67 percent point.

\[16\] See appendix for the impulse response to TFP shocks in the economy.
4.2 Hours Response Decomposition: Extensive and Intensive Margins

Is the intensive margin not important for accounting the total hours response to a monetary policy shock? This is the question that I address in this subsection. An important feature of a nonlinear mapping from hours into efficiency units is that the model economy can generate adjustment along both intensive and extensive margins. In order to examine the contributions of each margin to the total hours response, I further split the response of total hours worked into the two margins.

Figure 3 decomposes the response of aggregate hours into the extensive margin (employment) and the intensive margin (average hours conditional on working) in the model economy. As shown in Figure 3, the increased total hours is mainly due to a rise in employment, but the response of intensive margin adjustment is not small: employment rises by 0.33 percent, while average hours conditional on working increase by 0.22 percent. Having the 0.55 percent rise in total hours, the extensive margin contributes around 60 percent to the total hours response, while the intensive margin accounts for the rest (40 percent). Therefore, the employment response is relatively important, but the response along the intensive margin plays a non-negligible role in accounting for the total hours response.

I next provide empirical evidence for the effects of monetary policy shocks on both extensive and intensive margins. Toward this end, I employ a proxy Vector Autoregressive (VAR). The key
Figure 4: Decomposition of Hours Response: Proxy VAR
Note: The y-axis shows percent changes, and the x-axis shows months after the shock. The shaded regions are the 68 percent confidence bands generated by Monte Carlo simulations.

The idea of the proxy VAR is that the external instruments are noisy information of the true shock.17 This method incorporates external information, such as series based on narrative evidence (e.g., Mertens and Ravn (2013)) or high-frequency data (e.g., Gertler and Karadi (2015)).18

To investigate the results using the proxy VAR, I use monthly measures for monetary policy shocks, developed by Romer and Romer (2004), as an external instrument. Regarding the extensive margin, I use series of the number of total employees and of average weekly hours as measures for the intensive margin. Both measures are monthly data spanning 1983 to 2007 and come from the Current Employment Statistics (Establishment Survey). Federal funds rates are ordered first, and employment, total hours or average hours and the Consumer Price Index (CPI) are ordered after the federal funds rates.19

Figure 4 exhibits the estimated impulse responses with an expansionary monetary policy shock. The left panel depicts the total hours response, the response of employment (the extensive margin) is shown in the middle panel, and the right panel shows the response of average hours (the intensive margin).20 Both margins tend to increase with a monetary expanding, which makes total hours peak at 0.9 percent by 13 months after the shock. The response of the extensive margin shows an inverted-U shape: the employment rises and then recovers after 2 years. The peak response of employment is around 0.8 percent. Interestingly, the response of average hours is not small.

17See Ramey (2016) for a detailed discussion of the proxy VAR and its applications.
18Gertler and Karadi (2015) incorporates high-frequency series into the proxy VAR to identify the monetary policy shocks, and Mertens and Ravn (2013) use the narrative tax shock series, developed by Romer and Romer (2010), as an external instrument to identify the structural tax shock.
19Total hours and average hours cannot be included in the system at the same time, since the total hours worked are defined by the number of employees multiplied by average hours. Constant terms and twelve lags are included in the estimation system.
20I smooth the impulse-response functions based on centered moving averages with three periods.
The intensive margin jumps up on impact and has a peak response of around 0.4 percent by 12 months after the shock. It is instructive to inspect how much each margin contributes to the total hours response based on the empirical impulse responses. I decompose the total margin into the two margins at the peak of the total hours response (13 months after the shock). It follows that the relative contribution of each margin is similar to what the model generates: the employment response accounts for around 55 percent of the total hours response, while the contribution of the average hours response is around 45 percent. Therefore, this empirical result supports the model prediction that the extensive margin mainly accounts for a rise in total hours, but the intensive margin response is not negligible. In other words, abstracting from the intensive margin is a not harmless simplification for understanding the aggregate hours response.

4.3 Role of Each Margin

This subsection addresses a question: what role does each margin play in accounting for aggregate effects of monetary policy? There are two underlying primitives in the model economy which affect the aggregate hours response in this economy: the extent of heterogeneity, σ_e, and curvature in preferences over hours of work, γ. Intuitively, the response along the extensive margin is decreasing in the degree of heterogeneity, while the response along the intensive margin is increasing in the value of the preference parameter. To investigate the roles of both margins, I consider two counterfactual economies by changing the underlying primitives of heterogeneity and curvature in preferences over hours worked. I decrease the standard deviation of the individual productivity shock, σ_e, and increase the curvature parameter, γ. Specifically, for one specification, I set $\sigma_e = 1.5$ keeping σ_e the same as that in the benchmark model, dented by the “LG model,” which stands for “Larger Gamma.” For the other specification, having the same σ_e as in the benchmark model, I choose $\sigma_e = 0.197$ so that the on-impact response of total hours to a monetary policy shock is the same as that in the LG economy. I denote this economy as the “SH model,” which stands for “Smaller Heterogeneity.” Either way, the response of total hours will be larger than the benchmark economy, but the relative size of each margin may be different. In the LG model economy, the intensive margin is the dominant margin of adjustment, while the extensive margin will be relatively important in accounting for the response of total hours in the SH model economy. As in the benchmark model,

\footnote{In the SH economy, aggregate labor supply elasticity will be large since relatively many marginal workers are placed around the market wage when the economy is less heterogeneous. See Rogerson and Wallenius (2009), Chang and Kim (2006), and Ma (2019) for detailed discussions.}
Table 6: Distribution of Hours for Three Models

<table>
<thead>
<tr>
<th></th>
<th>Gini for Unconditional Hours</th>
<th>Gini for Conditional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark Model</td>
<td>0.35</td>
<td>0.19</td>
</tr>
<tr>
<td>Smaller σ_e</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td>Larger</td>
<td>0.38</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Note: “Benchmark” denotes the benchmark model where $\sigma_e = 0.287$ and $= 1.0$. “Smaller σ_e” denotes the model where $\sigma_e = 0.197$ and $= 1.0$. “Larger ” denotes the model where $\sigma_e = 0.287$ and $= 1.5$. Unconditional hours denote hours for both employed and non-employed households, while conditional hours denote hours conditional on being employed. Units are annual hours.

the two specifications are also calibrated to produce the same employment rate of 70 percent and the same average hours for workers conditional on employment (one-third).

Before comparing aggregate responses of the model economies, I examine how annual hours distribution varies across the three model specifications. The hours dispersion in the LG model is relatively large: the Gini coefficients for total hours (unconditional on employment) and hours conditional on employment are 0.38 and 0.22, respectively, in the LG economy, while the corresponding values are 0.35 and 0.19, respectively, in the benchmark model. Consistent with intuition, there is a negative relation between the standard deviation of the idiosyncratic shocks and the cross-sectional dispersion in hours worked. In the SH economy, the Gini index for total hours is 0.34, and the Gini coefficient for hours conditional on working is 0.18. Both measures in the SH economy are smaller than those in the benchmark model.

I next discuss how effects of monetary policy vary across the three model economies. Figure 5 shows the responses of key macro variables to monetary policy shocks in three model economies: the benchmark, the SH and the LG economies. As noted earlier, the response of total hours in the two counterfactual economies are the same by construction. As shown in the upper row in Figure 5, the responses of total hours in both of the SH and LG economies are larger than that in the benchmark economy: total hours increase by 0.58 percent in both counterfactual economies, while it rises by 0.54 in the benchmark case. While both counterfactual economies produce the same size of the total hours response, there is a compositional difference. In the economy with smaller σ_e, the contribution of the extensive margin to the total hours response increases. The response of employment in the model with smaller σ_e increases to 0.4 percent (from the 0.33 percent in the benchmark economy), but the average hours response decreases to 0.17 percent (from the 0.22 percent in the benchmark economy). This composition change makes the extensive margin account for 70 percent of the total hours response, while it contributes 60 percent to the total hours response in the benchmark model.
Figure 5: **Comparison across Model Economies I**

Note: Impulse response to a 100-basis-point (annualized) monetary policy shock. The y axis shows percent changes, and the x-axis shows quarters after the shock. “Benchmark” denotes the benchmark model where $\sigma_e = 0.287$ and $\gamma = 1.0$. “Smaller σ_e” denotes the model where $\sigma_e = 0.197$ and $\gamma = 1.0$. “Larger γ” denotes the model where $\sigma_e = 0.287$ and $\gamma = 1.5$.

The opposite result comes in the economy with a higher value of the curvature parameter, γ. In the LG model, the intensive margin response increases to 0.28 percent, and the response along the extensive margin slightly decreases, compared to the benchmark economy. Accordingly, the contribution of the average hours response in the economy with larger γ is around 49 percent, which is larger than the 40 percent in the benchmark economy.

The analysis in this subsection provides an important message to the conventional view regarding the total hours response. Even if the two economies generate the same response of total hours worked, they have totally different underlying behaviors (different responses of both intensive and extensive margins) as well as the different steady-state properties (different distributions of hours and income). This finding is of immediate relevance to monetary policymakers since understanding and quantifying the sources of aggregate responses is important to determine most appropriate policies.

Another important aggregate implication is the response of efficiency units of labor. This dimension is important to understand the response of output since it is the effective labor that is in the

22General equilibrium effects induced by consumption and wage responses can explain the smaller response of average hours in the SH economy and of employment in the LG model than those in the benchmark economy. I will discuss this issue in detail later.
production function as in Equation 4, not aggregate hours. The bottom row in Figure 5 compares the responses of output, efficiency units of labor (effective labor), and effective labor per employed households in the three economies. An important finding is that the two counterfactual economies have different compositional effects in response to a monetary policy shock. Specifically, starting from the bottom-right panel in Figure 5, the response of effective labor per working households increases in the economy with larger $\hat{\theta}$, where the intensive margin is dominant, by more than that in the benchmark economy. Efficiency units of labor per employed households increase by 0.30 percent in the economy with larger $\hat{\theta}$, while it rises by 0.25 percent in the benchmark case. Recalling that the size of the employment response is smaller in this counterfactual economy than that in the benchmark model, this implies that relatively productive households work more in the model with larger $\hat{\theta}$. In contrast, efficiency units of labor per employed households in the SH economy increase only by 0.23 percent, which is smaller than that in the benchmark model economy. Given the large increased employment in the economy with smaller σ_e, relative to the benchmark economy, this implies that relatively less productive households work more in the model with smaller σ_e. Overall, due to the larger employment effects, the response of efficiency units of labor is a bit larger in the SH model than that in the LG model, which makes the output response also a bit larger. This finding offers an interesting implication for the disaggregate effects of monetary policy in the sense that the distributional effect of monetary policy may depend on the relative size of adjustment along the intensive and extensive margin. I will discuss this issue in Section 5.

4.4 Slope of New Keynesian Philips Curve

In the standard New Keynesian economies, labor supply elasticities appear in a New Keynesian Philips curve (NKPC), affecting the slope of the curve and playing a role in accounting for the effectiveness of monetary policy. Accordingly, another important aggregate implication in the model with adjustment along the intensive and extensive margins is from the slope of the NKPC.

4.4.1 Determinants of Labor Supply Elasticity

Before discussing the slope of the NKPC, it is instructive to see how the intensive and extensive margin labor supply elasticities are determined in this economy. Intuitively, as discussed above, the extensive margin elasticity is determined by the degree of heterogeneity, while the intensive margin elasticity is determined by the curvature in preferences over hours of work. To confirm this
intuition, I estimate model-implied elasticity by running a standard labor supply regression using a simulated macro data from a model economy. I follow the empirical labor supply literature and run the following regression:

\[\log h_t = b_0 + b_1 \log w_t + b_2 \log c_t + \varepsilon_t. \]

(8)

The resulting estimate, \(b_1\), is aggregate compensated labor supply elasticity.\(^{23}\) Table 7 reports three model-implied labor supply elasticities (the total margin, extensive margin, and intensive margin elasticities) for the benchmark economy and the two counterfactual economies (the SH and LG economies).

In the benchmark model, the extensive margin elasticity is 0.88, which accounts for 60 percent of the total margin elasticity, while the intensive margin accounts for the remaining 40 percent, making the intensive margin elasticity 0.57. As expected, the extensive margin elasticity increases as \(\sigma_e\) decreases, while the intensive margin elasticity increases as \(\sigma_e\) increases. In the SH economy, the extensive margin elasticity increases to 1.36, which makes the total margin elasticity increase to 1.94. With this increase, the extensive margin elasticity in the economy with smaller \(\sigma_e\) accounts for 70 percent of the total margin elasticity (60 percent in the benchmark economy). In the LG economy, the intensive margin elasticity rises to 0.92, which increases the total margin elasticity by more than 20 percent. Accordingly, the intensive margin elasticity contributes around 49 percent to the total margin elasticity in the economy with larger \(\sigma_e\) (40 percent in the benchmark economy).

Chang et al. (2019) also introduce intensive and extensive margins of labor supply in heterogeneous agent general equilibrium models to study business cycle fluctuations. They argue that one

\(^{23}\)Of course, the estimate may be biased because i) a monetary policy shock shifts both aggregate labor demand and supply simultaneously, and ii) incomplete capital markets do not allow for the aggregation theorem (Chang and Kim, 2006). Ma (2019) shows that this identification problem might not be first-order importance since the bias may be systematic.
cannot think of intensive and extensive margin elasticities as independent parameters since both the preference parameter and the extent of heterogeneity jointly determine extensive and intensive margin elasticities. According to Table 7, however, it follows that a change in \dot{e} almost does not affect the intensive margin elasticity, and a change in \dot{e} has little impact on a variation in the extensive margin elasticity. This result implies that the degree of heterogeneity only matters for the extent of adjustment along the extensive margin, while the curvature parameter only matters for the extent of adjustment along the intensive margin. This finding is different from that in Chang et al. (2019) because they only focus on variations in employment and average hours and do not consider the consumption and wage responses. In that sense, their view does not fully reflect a true concept of compensated labor supply elasticity. Accordingly, I argue that, once both consumption and wage responses are considered as in Equation 8, compensated intensive and extensive margin elasticities almost exclusively depend on the preference parameter and the extent of heterogeneity, respectively.

4.4.2 Implication for Slope of New Keynesian Philips Curve

Another important finding is that, as was already mentioned in the literature discussion (See, e.g., Rogerson and Wallenius (2009)), the nonlinearity in the mapping from hours to efficiency units breaks the tight link between the curvature parameter and labor supply elasticity. Table 7 confirms this. The estimate of b_1 based on total hours in the benchmark economy is 1.45, which is larger than the value of the curvature parameter ($= 1$). When the degree of heterogeneity decreases, the difference gets larger due to a rise in the extensive margin elasticity given the preference parameter: in the SH economy, the estimated total margin elasticity is 1.97, which is much larger than one. In the LG economy, where $= 1.5$, the gap between the estimated aggregate labor supply elasticity and the value of the preference parameter is relatively small, but they are not equal.

Since labor supply elasticity affects the slope of the NKPC and the effectiveness of monetary
policy, the fact that aggregate labor supply elasticity is not equal to the curvature parameter and that it is endogenously generated by the underlying primitives of the economy means that there is an important implication when interpreting the slope of the NKPC. If I were to linearize the Phillips curve, the NKPC is given by:

\[
\pi_t = \frac{\epsilon - 1}{\Theta} (\sigma + f) \bar{y}_t + E_t \pi_{t+1},
\]

(9)

where \(\pi_t\) is inflation, \(\bar{y}_t\) is the output gap, \(\sigma\) is the inverse of the intertemporal elasticity of substitution, \(\chi\) is labor supply elasticity, and \(f = \frac{\gamma}{\gamma + \Delta}\). It is natural that one may ask the following questions: i) what are the aggregate implications of the difference between the curvature parameter and actual elasticity of labor supply for the conventional interpretation for the NKPC, and ii) if we instead used the preference parameter in the NKPC, would it cause a big difference from a quantitative perspective? These are the questions that I want to address in the rest of this subsection.

I consider two counterfactual slopes of the NKPC. One case is plugging the model-implied aggregate labor supply elasticities (the values in Table 7) and other parameters into Equation 9. The result of this case is shown in the second column of Table 8 ("Model Elasticity Implied"). If linearization and regression bias is small, the slope of the NKPC in this case would be similar to the true slope.\(^{25}\) The implied slopes of the NKPC in this case are 0.146, 0.129, and 0.135 in the benchmark economy and the SH and LG economies, respectively. As already conjectured by Table 7 and Equation 9, the benchmark model generates a relatively steeper NKPC since it has a relatively smaller total margin labor supply elasticity while the SH economy produces the flattest NKPC among the three economies since it has the highest aggregate elasticity.

The other case is plugging the curvature parameter along with other parameters directly into Equation 9, and the result of this case is presented in the third column of Table 8 ("Curvature Parameter Implied"). The conventional interpretation for the NKPC in standard representative-agent economies is that i) the curvature parameter is equal to aggregate labor supply elasticity, and ii) the same preference parameter implies the same slope of the NKPC, all else being equal. However, the nonconvexity in heterogeneous-agent economies challenges this view. First, a difference between

\(^{24}\)It should be noted that, given the same value of \(\epsilon\), \(f\) is also the same across the three models.

\(^{25}\)I also estimate the slope of the NKPC based on a regression method using an artificial data, and the results are similar. See appendix for details.
the estimated slope of the NKPC and that implied by the curvature parameters is quite large. The estimated slopes of the NKPC based on curvature parameters in the benchmark economy, and the SH and LG economies are 24, 43, and 22 percents steeper than the “Model Elasticity Implied” slopes, respectively.

Second, the same curvature parameter does not imply the same slope of the NKPC. For example, the benchmark and SH economies have the same curvature in preferences over hours of work, but the underlying slopes of the NKPC in the two economies are different: the model-implied slope is 0.146 in the benchmark model, while it is 0.129 in the model with smaller σ_e.\(^{26}\)

This finding cautions against the standard interpretation for the NKPC. Since a curvature in preferences over hours of work cannot fully represent the true elasticity of labor supply in an economy with a nonlinear mapping from time devoted to work to labor services, assuming that the curvature parameter is equal to aggregate labor supply elasticity is potentially very misleading from a quantitative perspective when interpreting the slope of the NKPC. Accordingly, other underlying primitives, which affect aggregate labor supply elasticity (e.g., the extent of heterogeneity in this paper), should be considered.

5 **Disaggregate Implications**

I next examine distributional implications of adjustment along both intensive and extensive margins. This analysis also provides an important message to monetary policy makers in the sense that, as discussed by Coibion et al. (2017) and Kaplan, Moll and Violante (2018), understanding of the monetary transmission mechanism at the disaggregate level is particularly important for the successful conduct of monetary policy.

5.1 **Effect of Monetary Policy on Inequality**

Before jumping into further discussion, it is also important to see how monetary policy affects various measures of inequality in the benchmark economy. A rich heterogeneity in earnings, asset holdings, and income across households predicts that monetary policy shocks could have non-negligible effects on inequality in the benchmark economy. Figure 6 confirms this prediction. The effects of 100-

\(^{26}\)This implies that a more equal economy has more effective monetary policy in terms of the output response, which is consistent with various empirical findings in the literature such as Alpanda and Zubairy (2017), Voinea, Lovin and Cojocaru (2018), and Ma (2019).
Figure 6: Responses of Inequality to Monetary Policy

Note: Impulse response of Gini coefficients of income, earnings, wealth, and consumption to a 100-basis-point (annualized) monetary policy shock. The Gini coefficients are logged, so the responses are percentage deviations from the steady state. The y axis shows percent changes, and the x-axis shows quarters after the shock.

A basis-point (annualized) expansionary monetary policy shocks on the Gini coefficients of earnings, income, consumption, and wealth are reported in Figure 6. As shown in the figure, an expansionary monetary policy reduces overall inequality in the economy: the Gini coefficients of earnings, income, and consumption decrease by 0.29, 0.13, and 0.03 percent, respectively. The wealth Gini does not respond on impact, but it decreases slowly after a monetary policy shock: the Gini coefficient of wealth falls by 0.03 percent by 6 quarters after the shock.27

These model results are broadly consistent with the empirical literature such as that from Furceri, Loungani and Zdzienicka (2016) and Coibion et al. (2017). In particular, Coibion et al. (2017) find that the effect of a monetary policy shock on earnings inequality is less than that on total income inequality, which is well-predicted by the benchmark economy.

5.2 Distributional Implication of Intensive and Extensive Margins

One may argue that the extent to which margin of labor supply is dominant may not be the first-order issue since the two counterfactual economies (the LG and SH economies) generate the very similar responses of hours and output. In this subsection, I challenge this view and argue that the relative size of each margin is significantly important for accounting for the distributional effects of

27As found in Ma (2019), the main mechanism of the effects of monetary policy on inequality is through a large increase in employment from the bottom of the distribution.
monetary policy. This is the other main focus in this paper.

As briefly discussed earlier, two findings, which are related to the distributional consequences of monetary policy, emerge from Figure 5. First, in the SH economy, the employment response is relatively large, and relatively less productive households work more. Second, in the LG economy, the response of employment is less than that in the benchmark economy, and households with relatively high productivity increase their hours by more. These two findings imply that monetary policy generates substantially different effects on inequality, particularly earnings inequality, in the two counterfactual economies. Intuitively, in the SH economy, expansionary monetary policy may decrease earnings inequality by more due to a significant rise in employment from the bottom of the distribution, while, earnings inequality may decrease by less or may increase in the LG economy since relatively productive households work more.

To better understand how the relative size of adjustment along the intensive and extensive margin plays a role in distributional effects of monetary policy, it is instructive to inspect the responses of hours-related variables depending on the level of productivity. Figure 7 compares the responses of earnings, total hours, the extensive margin (employment), and the intensive margin (average hours) across three model economies (the benchmark, the SH and LG economies). All the responses in Figure 7 show the responses of the lowest productivity quintile (1st quintile) relative to the highest productivity quintile (5th quintile).

As Figure 7 reveals, the distributional effects of monetary policy are substantially different between the two counterfactual economies, implying that the disaggregate effects depend on the relative size of adjustment along the intensive and extensive margin. The upper left panel in Figure 7 exhibits that the effect of monetary policy on earnings inequality is larger in the SH economy than that in the benchmark model. In response to an expansionary monetary policy shock, earnings for the first quintile relative to the fifth quintile increase by around 0.3 percent in the economy with smaller heterogeneity, while the relative earnings rise by only 0.1 percent in the benchmark economy. This result is interesting in the sense that a more equal economy has a more effective monetary policy in terms of both output (See Figure 5) and earnings inequality responses. As reported in the bottom left panel of Figure 7, this is mainly due to a significant rise in employment from the bottom of the productivity distribution in the SH economy: the relative employment response (1st/5th) is 0.43 percent in the economy with smaller heterogeneity, while it is only 0.29 percent.

28 See Ma (2019) for a detailed discussion about the relation between monetary policy effectiveness and inequality.
The large increase in employment of households at the bottom of the productivity distribution in the SH economy leads to a large increase in the relative total hours (1st/5th) as shown in the upper right panel of Figure 7. Another interesting finding is that the response of relative earnings (1st/5th) is negative on impact in the LG economy, as shown in the upper left panel of Figure 7, while it is positive on impact in other two economies (the benchmark and SH economies). This implies that monetary expanding increases earnings inequality when the intensive margin is the dominant source of variations in total hours worked. A rise in earnings inequality in the LG economy mainly comes from a larger increase in average hours provided by relatively productive households, as reported in the bottom right panel of Figure 7. The response of average hours for the first productivity quintile relative to the fifth group decreases by more in the LG economy than that in the benchmark model: the relative average hours fall by 0.28 percent in the LG economy, while they decrease by 0.2 percent in the benchmark economy.

The different responses of employment between productive and less-productive households are broadly consistent with an empirical finding in Ma (2019). Based on micro-level data, Ma (2019) finds that employment of the poor increases, while richer households do not change their employment in response to a monetary expansion.

The intensive margin response of the lowest quintile relative to the highest group in the SH economy is somewhat larger than that in the benchmark economy (the bottom right panel of Figure 7), which also contributes to an increase in the relative hours (1st/5th).
the benchmark case. This large decrease in the relative average hours in the LG economy leads to a fall in the relative total hours (1st/5th) as shown in the upper right panel of Figure 7 even though the relative employment (1st/5th) response is still positive (See the bottom left panel of Figure 7).

Therefore, the two counterfactual economies have significantly different distributional effects on earnings inequality from both quantitative and qualitative perspectives even though they generate the quite similar responses of output and total hours (See Figure 5). Hence, the extent to which margin of labor supply is dominant is crucial for accounting for the effects of monetary policy on the distribution of earnings.

6 Conclusion

A labor supply side story has been a second-order issue for accounting for the transmission mechanism of monetary policy in the New Keynesian literature. This study challenges this view and proposes a new perspective by suggesting that adjustment along the intensive and extensive margin is important for better understanding both aggregate and disaggregate effects of monetary policy. To this end, I develop a New Keynesian economy with heterogeneous agents where a nonlinear mapping from time devoted to work to labor services generates operative intensive and extensive margins of labor supply. The model economy can successfully replicate the salient features of cross-sectional heterogeneity in hours worked and the transitions within the distributions and produce reasonable responses of aggregate variables, including adjustment along both intensive and extensive margins, to a monetary policy shock.

As far as the aggregate implications are concerned, one of the main findings is that a nonlinear mapping from time devoted to work to labor services generates the gap between the curvature parameter and the true elasticity of labor supply, which cautions against the standard interpretation regarding the slope of a New Keynesian Phillips curve (NKPC). Hence, assuming that the curvature parameter presents aggregate labor supply elasticity is potentially very misleading from a quantitative perspective, and the extent of heterogeneity in the economy should be considered.

Regarding the disaggregate implications, an important finding is that, even if two economies generate similar aggregate implications of monetary policy, they may have significantly different disaggregate effects, depending on the relative size of adjustment along the intensive and extensive margins. In response to an expansionary monetary shock, earnings inequality decreases substantially when the extensive margin is the dominant margin of adjustment, while it may increase in an
economy with larger intensive margin adjustment. Therefore, the extent to which margin of labor supply is dominant is crucial for explaining the distributional consequences of monetary policy.
REFERENCES

Furceri, Davide, Prakash Loungani, and Aleksandra Zdzienicka. 2016. “The Effects of Monetary Policy Shocks on Inequality.” International Monetary Fund IMF Working Papers 16/245. 5.1

Ma, Eunseong. 2019. “Monetary Policy and Inequality: How Does One Affect the Other?.” Working Paper. 1, 1, 2.4.2, 8, 21, 23, 26, 27, 28, 29

Appendix

A THE COMPUTATIONAL ALGORITHM

A.1 Steady-state Economy

The computational algorithm used for the steady-state economy is summarized. In this step, I find the stationary measure, π. The steps are as follows.

Step 1. Endogenous parameters such as α and λ are selected.

Step 2. Construct grids for asset holdings, a and logged individual labor productivity, $\ln e$, where the number of grids for a and $\ln e$ are denoted by N_a and N_e, respectively. I set $N_a = 201$ and $N_e = 17$. a falls in the rage of $[-200]$. More asset grid points are assigned on the lower values of a. $\ln e$ is equally spaced in the range of $[-3\sigma_{\ln e}, 3\sigma_{\ln e}]$, where $\sigma_{\ln e} = \sigma_e / \sqrt{1 - \rho_e^2}$.

Step 3. Using Tauchen (1986), compute the transition probability matrices for individual labor productivity, Φ_e.

Step 4. Solve the individual Bellman equations. In this step, the optimal decision rules for saving $a'(a, e)$ and hours worked $h(a, e)$, the value functions, $V(a, e)$, are obtained. The detailed steps are as follows:

(a) Compute the steady-state real wage rate based on the firm’s first-order condition, where the steady-state capital return, r^d, is chosen to be 1 percent.

(b) Make an initial guess for the value function, $V_0(a, e)$ for each grid point.

(c) Solve the consumption-saving problem for each employment status:

$$
V_1^E(a, e) = \max_{a' \geq b, h \geq h} \left\{ \ln (\bar{w}g(h)e + (1 + r^d)a - a') \\
- \lambda \frac{h^{1+1/\gamma}}{1+1/\gamma} + \sum_{e' = 1}^{N_e} \Phi_e(e'|e)V_0(a', e') \right\}
$$

and

$$
V_1^N(a, e) = \max_{a' \geq b} \left\{ \ln ((1 + r^d)a - a') + \sum_{e' = 1}^{N_e} \Phi_e(e'|e)V_0(a', e') \right\}.
$$

(d) Compute $V_1(a, e)$ as $V_1(a, e) = \max \left\{ V_1^E(a, e), V_1^N(a, e) \right\}$.

37
(e) If \(V_0 \) and \(V_1 \) are close enough for each grid point, go to the next step. Otherwise, update the value functions \(V_0 = V_1 \), and go back to (c).

Step 5. Obtain the time-invariant measure, \(\mu \), with finer grid points for assets holding. Using cubic spline interpolation, compute the optimal decision rules for asset holdings with the new grid points. \(\mu \) can be computed using the new optimal decision rules and \(\Phi_e \).

Step 6. Compute aggregate variables using \(\mu \). If the computed rental price for capital and the employment rate become close enough to the targeted ones, then I find the steady-state equilibrium of the economy. Otherwise, reset the endogenous parameters, and go back to Step 4.

A.2 Economy with Monetary Policy Shocks

I summarize the computational algorithm used for the economy with aggregate shocks. To solve the dynamic economy, the distribution across households, \(\mu \), which will affect prices, should be tracked. Instead, I follow Krusell and Smith (1998) and use the first moment of the distribution and the forecasting function for it. The steps are as follows.

Step 1. I construct grids for aggregate state variables such as money supply shocks and the mean capital, and individual state variables such as the individual labor productivity and asset holdings. I construct five grid points for both of them for the aggregate capital, \(K \), and monetary policy shock, \(v \). For the logged monetary policy shock, \(\hat{v} = \ln v \), I construct five grid points in the range of \([-3\sigma_{\hat{v}}, 3\sigma_{\hat{v}}] \), where \(\sigma_{\hat{v}} = \sigma_v / \sqrt{1 - \rho_v^2} \). The grid points for \(K \) and \(\hat{v} \) are equally spaced. The grids for individual state variables are the same as those in the steady-state economy.

Step 3. I parameterize the forecasting functions for \(K', Y, C, \Pi, w, R, \) and \(\phi \).

Step 4. Given the forecasting functions for \(K' \) and \(w \), I solve the optimization problems for the individual households.\(^{31}\) I solve the optimization problems for households and obtain the policy functions for asset holdings, \(a'(a, e, K, v) \), and consumption \(c(a, e, K, v) \), and the hours decision rule, \(h(a, e, K, v) \).\(^{32}\)

\(^{31}\)Given the wage rate, \(w \), and the marginal cost, \(\phi \), the real interest rate, \(r^a \), can be obtained from the firm’s profit maximization.

\(^{32}\)As in the steady-state economy, the transition probabilities for \(e \) and \(v \) are approximated using Tauchen (1986).
Step 5. I generate simulated data for 2,500 periods using the value functions for individuals obtained in Step 4. The details are as follows.

(a) I set the initial conditions for K, v, and $\mu(a,e)$.
(b) Given the forecasting functions, I compute the gross inflation Π, marginal costs, ϕ, the gross nominal interest rate, R.
(c) Obtain the market-clearing wage, w. I choose \bar{w} as a guess for w. Given the forecasting functions and the evaluated value function obtained in Step 4, I obtain the hours decision rule, $h(a,e)$. I check if the labor supply is equal to labor demand, i.e., $L = \int e g(h(a,e))d\mu = L^D$. If not, update \bar{w}.
(d) Given the forecasting functions, the evaluated value function obtained in Step 4, and obtained w and ϕ, I solve the optimization problems for individual households to obtain the policy functions for asset holdings, $a'(a,e)$, and the hours decision rule, $h(a,e)$.
(e) I obtain aggregate variables based on the type distribution, μ, where $C = \int c(a,e)d\mu$,$L = \int e g(h(a,e))d\mu, K' = \int a'(a,e)d\mu, H = \int h(a,e)d\mu, Y = K^g L^{1-\theta} - \Delta$, and $I = K' - (1 - \delta)K$.
(f) Obtain the next period measure $\mu'(a,e)$ using $a'(a,e)$ and transition probabilities for e.

Step 6. I obtain the new coefficients for the forecasting functions by the OLS estimation using the simulated time series. If the new coefficients are close enough to the previous ones, the simulation is done. Otherwise, I update the coefficients, and go to Step 4.

B Additional Results

B.1 Model-estimated slope of the New Keynesian Philips curve

In this section, I discuss how I estimate the slope of the New Keynesian Philips curve using an artificial data that the models generate and compare the results with “Model Elasticity Implied” slopes in Table 8. I use a regression method based on the following equation, which shows a relation between real marginal cost gap, $\tilde{\phi}_t$, the output gap, \tilde{y}_t:

33 Given the wage rate, \bar{w}, and the marginal cost, ϕ, labor demand, L^D, can be obtained from the firm’s first order condition.

34 I drop the first 500 periods to eliminate the impact of the arbitrary choice of initial aggregate state variables.
I first estimate \(\sigma + \frac{\ell}{\chi} \) from Equation A.1 and multiply by \(\frac{\chi}{\sigma} \) to obtain the estimate of the slope of the NKPC. Instead of estimating Equation 9 directly, I take this indirect way because i) a bias problem might be mitigated when using the true value of \(\frac{\chi}{\sigma} \), ii) I must unnecessarily estimate two coefficients if I were to use Equation 9, and iii) there is an expectation term, \(E_t \pi_{t+1} \), in Equation 9, which may generate regression bias.

The estimated slopes of the NKPC are 0.136, 0.111, and 0.114 in the benchmark economy and the SH and LG economies, respectively. Comparing these estimated slope with the “Model Elasticity Implied” slopes in Table 8, differences are relatively small even though errors vary across the model economies from 7 percent (the benchmark economy) to 14 percent (the LG economy).
B.2 Transmission of Technology Shock

This subsection examines the transmission mechanism of an expansionary one-standard-deviation TFP shock in the economy. For parameters for total factor productivity (TFP) shocks, I choose $\hat{\rho}_z = 0.95$ and $\hat{\sigma}_z = 0.007$. The responses of various macro variables to expansionary TFP shocks for 100 quarters of horizon are shown in Figure A.1. The transmission mechanism of technology shocks in the model is through an increase in aggregate productivity. An expansionary TFP shock increases the overall productivity of intermediate goods firms, which leads the demand for both labor and capital inputs and their prices to increase. The increase in factor prices leads households to work more and to increase consumption and saving at the same time. Therefore, output, consumption and investment rise by 0.94 percent, 0.09 percent, and 3.0 percent on impact, respectively. As expected, an expansionary technology shock decreases annualized inflation by around 1.5 percent point, which reflects an increase in aggregate supply in the economy.