Early work on gravitational-wave detection by laser interferometers, including a 1972 MIT study describing a kilometer-scale interferometer and estimates of its noise sources.

The National Science Foundation (NSF) funds a new group at Caltech for laser interferometer research and a prototype interferometer. It funds MIT to complete its prototype and design and lead industry study of technology, costs and sites for a kilometer-scale interferometer.

MIT and Caltech jointly present results of the kilometer-scale interferometer study to NSF. Receive NSF committee endorsement on new large programs in physics.

LIGO founded as a Caltech/MIT project. National Science Board approves LIGO development plan.

Physics Decadal Survey and special NSF Panel on Gravitational Wave Interferometers endorse LIGO.

The National Science Board (NSB) approves LIGO construction proposal, which envisions initial interferometers followed by advanced interferometers.

NSF selects LIGO sites in Hanford, Washington, and Livingston, Louisiana. NSF and Caltech sign LIGO Cooperative Agreement.

Site construction begins at Hanford and Livingston locations.
The LIGO Scientific Collaboration (LSC) is established and expands LIGO beyond Caltech and MIT, including the British/German GEO collaboration, which operates the GEO600 interferometer in Hannover, Germany.

First coincident operation of initial LIGO interferometers with GEO600 interferometer.

NSB approves Advanced LIGO.

Joint data analysis agreement ratified between LIGO and the Virgo Collaboration, which operates the Virgo interferometer in Cascina, Italy. Joint observations with enhanced initial LIGO interferometer and Virgo.

Initial LIGO design sensitivity achieved. First gravitational wave search at design sensitivity.

Start of Advanced LIGO construction.

Initial LIGO operations conclude; Advanced LIGO installation begins.

Advanced LIGO installation and testing.

Advanced LIGO installation complete.

Advanced LIGO sensitivity surpasses initial LIGO.

During an engineering test a few days before the first official search begins, Advanced LIGO detects strong gravitational waves from collision of two black holes.