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INTRODUCTION
The ~2500-km-long Himalayan orogen is 

widely thought to consist of only three major 
units: the Lesser Himalayan Sequence (LHS; 
mainly low-grade Proterozoic metasediments), 
the Greater Himalayan Crystalline complex 
(GHC; largely high-grade paragneisses and mig-
matite), and the Tethyan Himalayan Sequence 
(THS; dominantly low-grade late Proterozoic 
to Eocene shelf sediments) (Heim and Gansser, 
1939). In the central Himalaya, the LHS and GHC 
are separated by the Main Central thrust, and the 
GHC and THS are separated by the South Tibet 
detachment (LeFort, 1996) (Fig. 1). However, in 
the western Himalaya (west of 77°E), the Main 
Central thrust places THS rocks directly over 
LHS metasediments (e.g., Yeats and Lawrence, 
1984; Frank et al., 1995; Pogue et al., 1999) 
(Fig. 1). Several scenarios have been advanced 
to explain this different relationship (e.g., Thakur, 
1998; DiPietro and Pogue, 2004; Yin, 2006), but 
uncertainty regarding the position of the South 
Tibet detachment in many locations in the NW 
India Himalaya (cf. Fig. 1 of Searle et al. [1999] 
and plate 1 of Steck [2003]) limits efforts to 
understand its signifi cance. This paper summa-
rizes the results of fi eld work undertaken in the 
western Himalaya that lead to an interpretation 
that explains this relationship but that challenges 
current views of Himalayan thrust tectonics.

GEOLOGY OF THE ROHTANG LA AREA
Our fi eld area is located in the Rohtang La 

area northwest of the Kulu Window (Figs. 1 and 
2). Although the South Tibet detachment can 
be traced from Nepal to this area, its westward 
extension is poorly defi ned (Fig. 2) (Choudhuri 
et al., 1992; Vannay and Grasemann, 1998; Jain 
et al., 1999), which had led to various interpre-
tations including connection with the Zanskar 
shear zone (Searle et al., 1999) and termina-
tion in the Rohtang La area (Steck, 2003). We 
mapped the position of the South Tibet detach-
ment by tracking its deformation zone, meta-
morphic grade changes across the fault, and 
marker beds along the fault.

Typically, the South Tibet detachment shear 
zone is hundreds of meters thick and exhibits 
both top-to-the-NE and top-to-the-SW shear-
sense indicators (also see Jain et al., 1999). This 
contrasts to the top-to-the-SW motion associated 
with the Main Central thrust ductile shear zone 
below. In general, gneisses are common below 
and schists are prevalent above the South Tibet 
detachment. Although garnet is present both above 
and below the South Tibet detachment,  kyanite 
and/or sillimanite are diagnostic of the South 
Tibet detachment footwall. Following  Vannay 
and Steck (1995) and Wyss et al. (1999), we used 
graphitic quartzite and discontinuous lenses of 
calc-silicate schists in the THS as marker beds to 
trace the South Tibet detachment hanging wall. 
Intrusive contacts around Cambrian-Ordovician  
granites in the South Tibet detachment hanging 
wall are undeformed, whereas the same con-
tacts in the South Tibet detachment footwall are 
intensely transposed by ductile folding.

At Rohtang La, the South Tibet detach-
ment shear zone preserves ductile shear fabrics 
including top-to-the-SW S-C fabric, top-to-the-
NE sigma augen, top-to-the-NE and top-to-
the-SW shear band cleavage, and top-to-the-SW 
folds (Fig. 3). The top-to-the-NE shear fabrics 
overprint top-to-the-SW shear fabrics (also 
see Jain et al., 1999). A sharp contact between 
mylonitic augen gneiss below and garnet schist 
above is present in the South Tibet detachment 
shear zone, which we interpret as the South 
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Tibet detachment fault. The South Tibet detach-
ment can be traced south of Rohtang La into the 
south-verging overturned Phojal anticline (i.e., 
the Phojal Nappe of Frank et al., 1973) along 
the west bank of the Beas River (Fig. 3A). The 
South Tibet detachment is overturned in the 
Phojal anticline (Figs, 3A and 3B) as indicated 
by the folding of (1) the gneiss-schist contact 
that marks the fault and features top-to-the-
NE sigma augen and top-to-the-NE C′ shear 
band cleavage (Fig. 3C), (2) the hanging-wall 
marker units of graphitic quartzite and calc-
silicate schist, and (3) mineral isograds directly 
above and below the fault (e.g., Frank et al., 
1973; Epard et al., 1995). Although the original 
geometry of the isograds may not have been sub-
horizontal (e.g., Le Fort, 1975), the subparallel 
relationship between our mapped South Tibet 
detachment and the regional isograds north of 
the anticline (i.e., Frank et al., 1973) is consis-
tent with overturned folding of the South Tibet 
detachment at this location.

The overturned South Tibet detachment can be 
traced southeastward from the Phojal anticline to 
the northern edge of the Main Central thrust 
Kulu Window near Manikaran (Fig. 3A). Using 
our lithologic and metamorphic criteria, we 
have extended the mapped location of the South 
Tibet detachment southeast from  Manikaran 
for another 50 km by correlation with the same 
gneiss-schist contact mapped by Sharma (1977). 
Still farther east, the overturned South Tibet 
detachment must merge with the Main Central 
thrust along the northeastern margin of the Kulu 
Window because the schist in the South Tibet 

detachment hanging wall pinches out west of the 
well-studied Sutlej River section where Greater 
Himalayan Crystalline gneiss is exposed contin-
uously between the Main Central thrust and the 
South Tibet detachment (e.g., Vannay and Grase-
mann, 1998) (Fig. 2). Thus, the merging of the 
South Tibet detachment and Main Central thrust 
in map view defi nes the tip line of a southward-
tapering GHC wedge (Fig. 3B). The overturned 
South Tibet detachment and Phojal anticline are 
eroded over the Kulu Window and reappear at the 
southeast side of the window, which we mapped 
along the Pabbar River (Fig. 2). The overturned 
South Tibet detachment there can be well con-
strained by metamorphic-grade variation across 
the fault and the South Tibet detachment hang-
ing-wall marker units.

DISCUSSION
The South Tibet detachment makes a sharp 

U-turn in map view at Rohtang La, changing 
from a gently west-dipping structure to a NE-
dipping overturned fault that merges with the 
Main Central thrust (Fig. 2). Overturned folding 
may have been caused by distributed top-to-the-
SW shear across the Main Central thrust zone, 
suggesting that the South Tibet detachment 
became inactive prior to cessation of motion on 
the Main Central thrust. This is consistent with 
age constraints showing that both faults were 
active in the early Miocene, but Main Central 
thrust slip may extend to the middle Miocene 
(Catlos et al., 2002; Vannay et al., 2004).

The three-layer division of the Himalaya has 
been explained by wedge-extrusion, channel-
fl ow, and general-shear models (Burchfi el and 
Royden, 1985; Grujic et al., 1996; Vannay and 
Grasemann, 2001; Nelson et al., 1996; Beau-
mont et al., 2001). Note that the Nelson et al. 
(1996) channel-fl ow model differs from that of 

Beaumont et al. (2001) in that the latter predicts 
India crust to be subducted and then return to the 
surface without transporting Asian rocks to the 
present Himalayan range. This physical  process 
may be more appropriately characterized as cor-
ner fl ow (see Cloos, 1982). None of these mod-
els explain our observed southward merging of 
the Main Central thrust and South Tibet detach-
ment, but instead require the Main Central thrust 
and South Tibet detachment to be surface faults. 
The tunneling stage of channel fl ow of Beaumont 
et al. (2001) is compatible with the observed 
Main Central thrust–South Tibet detachment 
branch line geometry, but fails to explain two 
key kinematic observations. First, its predicted 
top-to-the-N South Tibet detachment kinemat-
ics is inconsistent with the observed alternating 
top-to-the-N and top-to-the-S shear fabrics in 
the South Tibet detachment zone in NW India 
and throughout the Himalaya (e.g., Patel et al., 
1993; Hodges et al., 1996; Grujic et al., 2002; 
Robinson et al., 2006; this study). Second, chan-
nel-fl ow tunneling requires slip on the South 
Tibet detachment and Main Central thrust to 
vanish at their branch line where the tunnel ter-
minates, which is inconsistent with >100 km of 
Main Central thrust slip south of the Main Cen-
tral thrust–South Tibet detachment branch line 
as constrained by the distance between the Kulu 
Window and the Simla Klippe (Fig. 1).

To reconcile the new observation for the 
Main Central thrust–South Tibet detachment 
relationship and the alternating shear motion 
on the South Tibet detachment, we propose that 
the GHC was emplaced as a tectonic wedge 
(see Fig. 10 of Price, 1986) via southward slip 
on the Main Central thrust and alternating top-
to-the-N and top-to-the-S motion on the South 
Tibet detachment (Fig. 4) (Yin, 2006). Depend-
ing on the displacement boundary condition at 
the back side of the GHC thrust sheet, sense of 
shear along the South Tibet detachment could 
have alternated between top-to-the-N and top-
to-the-S (Figs. 4B and 4C). Even when motion 
along the South Tibet detachment was top-to-
the-N, the THS moved southward with respect 
to the LHS (Figs. 4D, 4E, and 4F). The top-to-
the-N South Tibet detachment motion may link 
to top-to-the-N slip on the Great Counter thrust 
along the Indus-Tsangpo suture (Figs. 1 and 4H) 
(e.g., Yin et al., 1994). The Great Counter thrust 
forms the roof thrust of a second south-directed 
tectonic wedge, the Asia Plate (see Fig. 4H). 
The alternating insertion of the two tectonic 
wedges could have produced the temporally 
varying shear sense on the South Tibet detach-
ment (Figs. 4A–C and 4H).

Although some parts of the Himalaya show 
multiple alternations in shear-sense along the 
South Tibet detachment (e.g., Hodges et al., 
1996), the dominant pattern is a sequential 
change from top-to-the-S to top-to-the-N shear 
on the South Tibet detachment (e.g., Patel et al., 
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1993; Jain et al., 1999; Grujic et al., 2002). Uni-
formly top-to-the-N South Tibet detachment slip 
could produce this pattern because records of top-
to-the-S shear from the upper part of the wedge-
front shear zone (Main Central thrust–south) 
would have been transported to the wedge-top 
shear zone (South Tibet detachment) across the 
Main Central thrust–South Tibet detachment 
branch line (see Figs. 4D–4F). Thus, the early 
Main Central thrust top-to-the-S shear fabrics 
would have been overprinted by the later South 
Tibet detachment top-to-the-N shear fabrics.

The discovery of the Main Central thrust–
South Tibet detachment branch line has impor-
tant implications for explaining along-strike 
variation of the Himalayan geology and its rela-
tionship to exhumation. Because the erosional 
pattern of the Himalaya may be asymmetric, 
with an eastward increase in the magnitude of 
exhumation (Finlayson et al., 2002), it is pos-
sible that the Main Central thrust–South Tibet 
detachment branch line is preserved in the west-
ern Himalaya but eroded away in the central 
Himalaya (Fig. 1).
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CONCLUSIONS
Field mapping in the NW India Himalaya 

reveals southward-up merging of the South Tibet 
detachment and Main Central thrust and a com-
plex South Tibet detachment slip history alternat-
ing between top-to-the-N and top-to-the-S shear. 
These observations are inconsistent with existing 
Himalayan models, but they are consistent with a 
tectonic-wedging model (Price, 1986). They also 
help to explain the change in structural correla-
tion between the major Himalayan faults (Main 
Central thrust and South Tibet detachment) 
and the Himalayan units (Lesser Himalayan 
Sequence, Greater Himalayan Crystalline com-
plex, and Tethyan Himalayan Sequence) from 
the central to western Himalaya: the Main Cen-
tral thrust places the GHC over the LHS in the 
central Himalaya, but it juxtaposes the THS over 
the LHS in the western Himalaya. This variation 
can be attributed to an eastward increase in the 
magnitude of exhumation resulting in differential 
preservation of past orogenic architecture. This 
implies that the along-strike variation of Hima-
layan geology may not be a result of a change 
in deformation mechanism but a consequence of 
spatially varying erosion.
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