ADMISSION

Who should apply

Students looking for a prestigious graduate program in the geosciences are encouraged to apply. Admission to the graduate program is competitive, based on academic merit and research focus.

Applicants must have the following to be considered:

- Bachelor’s degree from an accredited U.S. institution or the equivalent from a foreign institution
- Grade Point Average (GPA) of at least 3.0 on all undergraduate work (or last half degree requirement) and a 3.0 GPA or better on any graduate work completed
- International applicants must have at least a 3.0 GPA or equivalent on all college-level work attempted and must receive a score of 550 (paper-based) or 213 (computer-based) or 79 (Internet-based) on the TOEFL exam or a score of 6.5 or above on the IELTS exam
- Graduate Record Examination (GRE) combined score of at least 300 (preferably averages of at least 150 verbal and 150 quantitative)

*Due to the nature of competitive admission, meeting the minimum requirements does NOT guarantee admission to the program.

Application Deadlines

Fully completed applications must be submitted online to the LSU Graduate School by the following deadlines:

January 1: Application deadline with funding consideration for the FALL semester
October 1: Application deadline with funding consideration for the SPRING semester

A “Fully Completed Application” includes the following:

- An online application to the LSU Graduate School (including statement of purpose (required), CV/resume (optional), and writing sample (optional). CV/resume and writing sample are highly recommended
- All official transcripts from all universities attended
- Official GRE scores
- Official TOEFL or IELTS scores (international applicants only)
- Three (3) letters of recommendation submitted via the online application for admission

Ready to Apply?

Applications to the LSU Graduate School are available online at: gradapply.lsu.edu

FINANCIAL AID

The Department of Geology & Geophysics is proud to offer scholarships and awards to outstanding students. The department nominates and selects students for awards during the academic year. Each award carries specific requirements that must be met and maintained throughout the year.

FINANCIAL AID

Scholarships and awards are available online at: gradapply.lsu.edu

CONTACT US

Phone: (225) 578-3353
Fax: (225) 578-2182
Email: geology@lsu.edu

QUESTIONS?

Dr. Peter Clift
Grad Student Advisor
pclift@lsu.edu

Heather Lee
Grad Admissions Coordinator
heather@lsu.edu

GrADUAtE ProGRAMs
A FOCUS ON RESEARCH

EARTH MATERIALS & SOLID EARTH PROCESSES

Under the umbrella of Earth materials, a variety of processes and topics are covered.

This includes projects in mineralogy, crystallography, and geochemical studies of Earth materials. The processes that form them, and their rocky melts and minerals, are critical to understanding the evolution of the Earth. Other planetary scientists include the role of fluids in contact metamorphism, isotopic studies of the origin of high-pressure fluids in and around sedimentary basins, and ancient geologic processes.

Geologists and geoscientists have a wide range of expertise in dealing with terrestrial, extraterrestrial, and extraterrestrial materials. Geology and geophysics students at LSU work to strengthen and enhance their understanding of the geophysical and tectonic processes.

The best way to understand the Earth is to travel to different locations, including places that are difficult to reach by using comprehensive mathematical and theoretical methods. Examples of geophysical processes include gravity, heat flow, and the lithosphere as well as fluid flow and deformation of the crust. Current research in minerals includes investigations of the tectonometamorphism of high-grade metamorphic terrains.

EVOLUTION OF SEDIMENTARY BASINS

Based on the landform and surface expressions, the Louisiana region provides a natural home for the study of the geology of the Mississippi River. The SEDIMENTARY BASINS research group at LSU focuses on understanding how sedimentary basins form, fill, and evolve over geological timescales. By understanding how the sedimentary record is formed, we can interpret events that affected the accumulation and lithification of sediments. This includes projects in mineralogy, petrology, sedimentology, and tectonic studies. Special interests include the role of fluids in contact metamorphism, isotopic studies of the origin of high-pressure fluids in and around sedimentary basins, and ancient geologic processes.

DEEP-OCEAN ENVIRONMENTAL GEOSCIENCES

Sediments can reveal changes in climate and environmental conditions, or track tectonic processes. We also examine how surface processes feedback on climate. In the deep ocean, the sedimentary record is formed, which is essential to understanding how the Earth has evolved. Research capabilities include a wide range of subdisciplines (geochemistry, engineering, and oceanography), emphasizing deltaic, shelf and slope processes on planetary bodies extending from the Earth to Mars. Their research is interdisciplinary, including coastal geology, sedimentary systems, and biogeochemical processes in polar lake ecosystems. Inspired by the possibility of life beyond Earth, this research group focuses on how the development of the topography and evolution of climate impact plants and animals on planetary bodies, of which may then be preserved in sedimentary basins. Understanding how the sedimentary record is formed is essential, and it is through understanding physical principles, and the interplay of these processes, that we gain knowledge about the Earth's history and its future.