LaCNS Seminars Fall 2017


Jared Delcamp photo1) Tuesday, September 12, 12:30 pm, 215 Williams Hall (joint LaCNS – Organic Chemistry seminar)

Prof. Jared Delcamp (Dept. of Chemistry & Biochemistry, University of Mississippi), host Donghui Zhang

“Photon Management in NIR and SSM Dye-Sensitized Solar Cells”

Abstract:  Recently, dye-sensitized solar cells (DSCs) were shown to be the highest power conversion efficiency technology of any solar cell technology when using photons from the beginning of the solar spectrum until 700 nm. Two key directions are apparent in further elevating this technology: (1) broadening the spectral window used, and (2) efficiently subdividing the spectrum further for multijunction devices which can be used in combination with many solar cell technologies. Progress toward designing optimal panchromatic organic sensitizers to use NIR photons based on physical organic concepts such as proaromaticity and cross conjugation will be discussed. Additionally, the design and realization of a series sequential multijunction dye-sensitized solar cell (SSM-DSC) system for effective photon management will be discussed. Ongoing research to optimize this system based on transition metal redox shuttle design and high voltage organic dye design will be analyzed. The SSM-DSC system coupled with electrocatalysts as solar-to-fuel systems has been shown to power water splitting and CO2 reduction coupled with water oxidation from a single illuminated area without external bias.


 Ken Jordan photo2) Monday, November 13, 3:00 pm, 1008B Digital Media Center

Prof. Kenneth Jordan (Richard King Mellon Professor and Distinguished Professor of Computational Chemistry, Department of Chemistry, Univ. of Pittsburgh), host Revati Kumar

“Model Hamiltonians for Characterizing Excess Electrons Interacting with Fullerenes and Polyaromatic Hydrocarbons”

Abstract:  It is well known that certain metals and graphene support Rydberg-type series of excess electron states, where the binding of the electron is due to the interaction with its image potential.  Sufficiently, polarizable molecules and clusters possess very-extended non-valence anion stats that can be viewed as finite system analogs to image potential states.  In this talk, I discuss the development of one electron Hamiltonians for describing these excess electron species.  These are generated by coupling the excess electron to a many-body polarizable force field.


 Norman Wagner photo3) Monday, November 20, 3:00 pm, 1008B Digital Media Center

Prof. Norman Wagner (Department of Chemical & Biomolecular Engineering, Univ. of Delaware), host Bhuvnesh Bharti

“Title TBA”

Abstract:  TBA


 Back to Top