FE Review Course - Fluid Mechanics

Frank T.-C. Tsai, Ph.D., P.E.
Dept. of Civil \& Environmental Engineering, LSU
ftsai@lsu.edu
(O) 578-4246

Get the handbook!!

- REFERENCE HANDBOOK
- 9.4 Version for Computer-Based Testing

Visualize questions

- Draw diagrams
- Annotate diagrams with numbers, symbols, equations, etc.
- Find right equations from the reference handbook
- Skip questions if you cannot quickly find equations from the reference handbook

Review Outline

- Basic fluid properties
- Capillary force
- Manometer
- Static pressure force
- Bouyant force \checkmark
- Continuity equation
- Bernoulli equation
- Mass balance equation
- Venturi meter
- Head loss
- Forces on objects
- Fluid rotation

DENSITY, SPECIFIC VOLUME, SPECIFIC
 WEIGHT, AND SPECIFIC GRAVITY

The definitions of density, specific volume, specific weight, and specific gravity follow:

$$
\begin{array}{ll}
\rho=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta m / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta W / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & g \cdot \Delta m / \Delta V=\rho g
\end{array}
$$

also $S G=\gamma / \gamma_{w}=\rho / \rho_{w}$, where
(1) $\mathcal{L}=$ density (also called mass density),
$\Delta m=$ mass of infinitesimal volume,
$\Delta V=$ volume of infinitesimal object considered,
(2) $\gamma=$ specific weight,
$=\overline{\rho g}$,
$\Delta W=\overline{w e i g h t ~ o f ~ a n ~ i n f i n i t e s i m a l ~ v o l u m e, ~}$
(3) $S G=$ specific gravity,
(4) $\rho_{w}=$ density of water at standard conditions
$=1,000 \mathrm{~kg} / \mathrm{m}^{3}\left(62.43 \mathrm{lbm} / \mathrm{ft}^{3}\right)$, and
$=$ specific weight of water at standard conditions,
$=9,810 \mathrm{~N} / \mathrm{m}^{3}\left(62.4 \mathrm{lbf} / \mathrm{ft}^{3}\right)$, and
$=9,810 \mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}^{2}\right)$.

\notin SURFACE TENSION AND CAPILLARITY

Surface tension σ is the force per unit contact length $\sigma=F / L$, where
$\checkmark \sigma=$ surface tension, force/length,
$=$ surface force at the interface, and
$\nRightarrow h=\frac{4 \sigma \cos \beta}{\gamma d}$
$L \quad=$ length of interface.
The capillary rise h is approximated by $h=(4 \sigma \cos \beta) /(\gamma d)$, where
$h \quad=$ the height of the liquid in the vertical tube,
$\sigma \quad=$ the surface tension,
$\beta=$ the angle made by the liquid with the wetted tube wall,

θ
$\checkmark \gamma \quad=$ specific weight of the liquid, and
$\checkmark^{d}=$ the diameter of the capillary tube.
8. A clean glass tube is to be selected in the design of a manometer to measure the pressure of kerosene. Specific gravity of kerosene $=0.82$ and surface tension of kerosene $=0.025 \mathrm{~N} / \mathrm{m}$. If the capillary rise is to be limited to 1 mm , the smallest diameter (cm) of the glass tube should be most nearly

BB. 1.50C. 1.75D. 2.00

$$
\begin{aligned}
& h=\frac{40 \cos \beta}{\mu d}=\frac{4 \sigma}{r d} \quad \frac{r(r)}{r_{H 20}}=S G=0.82 \\
& \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}} \times 1 \mathrm{~mm}=\frac{4\left(0.025 \frac{\mathrm{~N}}{\mathrm{~m}}\right)}{(0.82)(9810) \times d} \rightarrow d=0.0125 \mathrm{~m} \\
&=1.25 \mathrm{~cm}
\end{aligned}
$$

STRESS, PRESSURE, AND VISCOSITY

Stress is defined as
$\tau(1)=\operatorname{limit}_{\Delta A \rightarrow 0} \Delta F / \Delta A$, where
$\tau(1)=$ surface stress vector at point 1 ,
$\Delta F=$ force acting on infinitesimal area ΔA, and
$\Delta A=$ infinitesimal area at point 1.
$\tau_{n}=-P$
$\tau_{t}=\mu(d v / d y)$ (one-dimensional; i.e., y), where
τ_{n} and $\tau_{t}=$ the normal and tangential stress components at point 1 ,
$P \quad=$ the pressure at point 1 ,
μ = absolute dynamic viscosity of the fluid $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}[\mathrm{lbm} /(\mathrm{ft}-\mathrm{sec})]$,
$d \mathrm{v}=$ differential velocity,
dy = differential distance, normal to boundary.
v = velocity at boundary condition, and
$\stackrel{y}{v}$
$=$ normal distance, measured from boundary.
$=$ kinematic viscosity; $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$
where $v=\mu / \rho \quad \frac{\mu}{\rho}=\tau$
For a thin Newtonian fluid film and a linear velocity profile, $\mathrm{v}(y)=\mathrm{v} y / \delta ; d \mathrm{v} / d y=\mathrm{v} / \delta$, where
v $\quad=$ velocity of plate on film and
$\delta \quad=$ thickness of fluid film.
For a power law (non-Newtonian) fluid

$$
\tau_{t}=K(d \mathrm{v} / d y)^{n} \text {, where }
$$

$K=$ consistency index, and
$n \quad=$ power law index.
$n<1 \equiv$ pseudo plastic
Newtonian vs. Non-Newtonian fluids

Dilatant:
Newtonian:
Pseudo plastic:
$\tau \uparrow d u / d y \uparrow$ $\tau \propto d u / d y$ $\tau \downarrow d u / d y \uparrow$

$\mu=$ slope

$$
\tau=\mu \frac{d u}{d y}
$$

$n>1$ slope increases with increasing τ (shear thickening)
$n<1$ slope decreases with increasing τ (shear thinning) Ex) blood, paint, liqid plastic

PROPERTIES OF WATER ${ }^{\text {' }}$ (SI METRIC UNITS)

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

PROPERTIES OF WATER (ENGLISH UNITS)

Temperature (${ }^{\circ} \mathrm{F}$)	Specific Weight $\begin{gathered} \gamma \\ \left(\mathrm{lb} / \mathrm{ft}^{3}\right) \end{gathered}$	Mass Density $\stackrel{\rho}{\left(\mathrm{lb} \cdot \sec ^{2} / \mathrm{ft}^{4}\right)}$	Absolute Dynamic Viscosity $\stackrel{\mu}{\left(\times 10^{-5} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^{2}\right)}$	Kinematic Viscosity $\begin{gathered} v \\ \left(\times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec}\right) \end{gathered}$	Vapor Pressure p_{v} (psi)
32	62.42	1.940	3.746	1.931	0.09
40	62.43	1.940	3.229	1.664	0.12
50	62.41	1.940	2.735	1.410	0.18
60	62.37	1.938	2.359	1.217	0.26
70	62.30	1.936	2.050	1.059	0.36
80	62.22	1.934	1.799	0.930	0.51
90	62.11	1.931	1.595	0.826	0.70
100	62.00	1.927	1.424	0.739	0.95
110	61.86	1.923	1.284	0.667	1.24
120	61.71	1.918	1.168	0.609	1.69
130	61.55	1.913	1.069	0.558	2.22
140	61.38	1.908	0.981	0.514	2.89
150	61.20	1.902	0.905	0476	3.72
160	61.00	1.896	0.838	0.442	4.74
170	60.80	1.890	0.780	0.413	5.99
180	60.58	1.883	0.726	0.385	7.51
190	60.36	1.876	0.678	0.362	9.34
200	60.12	1.868	0.637	0.341	11.52
212	59.83	1.860	0.593	0.319	14.70

Units and Scales of Pressure Measurement

$\underline{6894.76 \mathrm{~Pa} / \mathrm{psi}}$ (conversion factor)

Absolute pressures are often indicated as psia, and gage pressure as psig.

Fluid Statics

-Pressure vs. elevation

- Manometers
-Force over submerged plane and curved surfaces
-Buoyancy

$$
\left\{\begin{array}{l}
P_{1}-r h=P_{2} \\
h=z_{2}-z_{1}
\end{array}\right.
$$

THE PRESSURE FIELD IN A STATIC LIQUID

The difference in pressure between two different points is

$$
P_{2}-P_{1}=-\gamma\left(z_{2}-z_{1}\right)=-\gamma h=-\rho g h
$$

For a simple manometer,

$$
P_{1}=P_{2}+\gamma_{2} z_{2}-\gamma_{1} z_{1}
$$

Absolute pressure $=$ atmospheric pressure + gage pressure reading
Absolute pressure $=$ atmospheric pressure - vacuum gage pressure reading

* Bober, W. \& R.A. Kenyon, Fhid Mexhanics, Wiley, New York, 1900. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.
\downarrow : add γh Jump across: no change \uparrow : subtract γh

FIGURE 2.10 Simple U-tube manometer.

$$
p_{A}+r_{1} h_{1}-r_{2} h_{2}=0
$$

1. In the following two cases, which case has higher total force acting on the side wall?
(a) right side case
(b) left side case
(c) the same in both cases

2. What is the force at B if the tanks contain stationary oil at $S G=0.7$?

$$
F_{B}=?
$$

$$
\mathrm{F}_{\mathrm{A}}=900 \mathrm{~N}
$$

$$
\begin{gathered}
P_{A}+r_{0 i 1} \times 1 m \\
-\underline{r_{0 i 1} \times 3 m=P_{B}} \\
\frac{900 \mathrm{~N}}{\frac{10}{4 \pi(2000)}=}=\frac{F_{A}}{A_{A}}+0.7 \times 9810 \times 1-0.7 \times 9810 \times 3=\frac{F_{B}}{\frac{1}{4} \pi\left(\frac{30}{100}\right)^{2}} \\
\rightarrow F_{B}=1054 \mathrm{~N}
\end{gathered}
$$

3. What is the gage pressure in the inverted jar?

$$
P+\underset{\substack{\gamma_{1} \\ 9810}}{1_{10}} \times \frac{40 \mathrm{~cm}}{100}=0 \rightarrow P=3920 \frac{\mathrm{~Pa}}{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

FORCES ON SUBMERGED SURFACES AND THE CENTER OF PRESSURE

 (b) Pressure distribution.

The pressure on a point at a distance Z^{\prime} below the surface is

$$
p=p_{o}+\gamma Z^{\prime} \text {, for } Z^{\prime} \geq 0
$$

If the tank were open to the atmosphere, the effects of p_{o} could be ignored.
The coordinates of the center of pressure ($C P$) are

$$
\begin{aligned}
& y^{*}=\left(\gamma I y_{c} z_{c} \sin \alpha\right) /\left(p_{c} A\right) \text { and } \\
& z^{*}=\left(\gamma I y_{c} \sin \alpha\right) /\left(p_{c} A\right), \text { where }
\end{aligned}
$$

$y^{*}=$ the y-distance from the centroid (C) of area (A) to the center of pressure,
$z^{*}=$ the z-distance from the centroid (C) of area $(A$ to the center of pressure,
$I_{y_{f}}$ and $I_{y_{c} z_{c}}=$ the moment and product of inertia of the area,
$p_{c}=$ the pressure at the centroid of area (A), and
$Z_{c}=$ the slant distance from the water surface to the centroid (C) of area (A).

If the free surface is open to the atmosphere, then $p_{o}=0$ and $p_{c}=\gamma Z_{c} \sin \alpha$.

$$
y^{*}=I_{y_{c} z_{c}} /\left(A Z_{c}\right) \text { and } z^{*}=I_{y_{c}}\left(A Z_{c}\right)
$$

The force on a rectangular plate can be computed as

$$
\boldsymbol{F}=\left[p_{1} A_{\mathrm{v}}+\left(p_{2}-p_{1}\right) A_{\mathrm{v}} / 2\right] \mathbf{i}+V_{f} \gamma_{f} \mathbf{j} \text {, where }
$$

$\boldsymbol{F}=$ force on the plate,
$p_{1}=$ pressure at the top edge of the plate area,
$p_{2}=$ pressure at the bottom edge of the plate area,
$A_{\mathrm{v}}=$ vertical projection of the plate area,
$V_{f}=$ volume of column of fluid above plate, and
$\gamma_{f}=$ specific weight of the fluid.

Area Moment of Inertia

$$
I_{y c}=\frac{b h^{3}}{12}
$$

C.G. = Center of Gravity
C.P. $=$ Center of Pressure
(1) $P_{C}=r \underline{h_{C}}=r^{r} \underline{z_{C} \sin \theta}$ (Pressure at C.P.
(2) $F_{P}=P_{C} A=r h_{c} A=r z_{c} \sin \theta A$ (Total Pressure force at $C . P_{i}$)

$$
\nleftarrow(3) \frac{Z^{*}}{Z_{y_{c}}}=\frac{\frac{6 h^{3}}{12}}{z_{c} A}
$$

Inc: Area Moment of Inertia to y-axis across the C.G.
(4) $z_{c p}=z_{c}+z^{*}$

Figure	Area \& Centroid	Area Moment of Inertia	(Radius of Gyration) ${ }^{2}$	Product of Inertia
	$\left\{\begin{array}{l} A=b h / 2 \\ x_{c}=2 b / 3 \\ y_{c}=h / 3 \end{array}\right.$	$\begin{aligned} & I_{x_{e}}=b h^{3} / 36 \\ & I_{y_{e}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 4 \end{aligned}$	$\begin{aligned} & r_{x_{y}}^{2}=h^{2} / 18 \\ & r_{y_{y}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 2 \end{aligned}$	$\begin{aligned} & I_{x, y_{e}}=A b h / 36=b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 8 \end{aligned}$
	$\left\{\begin{array}{l} A=b h / 2 \\ x_{c}=b / 3 \\ y_{c}=h / 3 \end{array}\right.$	$\begin{aligned} & I_{x_{e}}=b h^{3} / 36 \\ & I_{y_{e}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 12 \end{aligned}$	$\begin{aligned} & r_{x_{y}}^{2}=h^{2} / 18 \\ & r_{y_{y}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 6 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{e}}=-A b h / 36=-b^{2} h^{2} / 72 \\ & x_{x y}=A b h / 12=b^{2} h^{2} / 24 \end{aligned}$
	$\left\{\begin{array}{l} A=b h / 2 \\ x_{c}=(a+b) / 3 \\ y_{c}=h / 3 \end{array}\right.$	$\begin{aligned} & I_{x_{0}}=b h^{3} / 36 \\ & I_{y_{0}}=\left[b h\left(b^{2}-a b+a^{2}\right)\right] / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=\left[b h\left(b^{2}+a b+a^{2}\right) / / 12\right. \end{aligned}$	$\begin{aligned} & r_{x_{y}}^{2}=h^{2} / 18 \\ & r_{y_{y_{2}}^{2}}=\left(b^{2}-a b+a^{2}\right) / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=\left(b^{2}+a b+a^{2}\right) / 6 \end{aligned}$	$\begin{aligned} I_{x_{e} y_{e}} & =[1 h(2 a-b) / 36 \\ & =\left[b h^{2}(2 a-b)\right) / 72 \\ I_{y y} & =[1 h(2 a+b)] / 12 \\ & -\left[b h^{2}(2 a+b)\right] / 24 \end{aligned}$
	$\begin{aligned} & A=b h \\ & x_{c}=b / 2 \\ & y_{c}=h 2 \end{aligned}$	$\begin{aligned} & I_{x_{e}}=b h^{3} / 12 \\ & I_{y_{e}}=b^{3} h / 12 \\ & I_{x}=b h^{3} / 3 \\ & I_{y}=b^{3} h / 3 \\ & J=\left[b h\left(b^{2}+h^{2}\right)\right] / 12 \end{aligned}$	$\begin{aligned} & \hline r_{x_{y}}^{2}=h^{2} / 12 \\ & r_{y_{y}}^{2}=b^{2} / 12 \\ & r_{x}^{2}=h^{2} / 3 \\ & r_{y}^{2}=b^{2} / 3 \\ & r_{p}^{2}=\left(b^{2}+h^{2}\right) / 12 \end{aligned}$	$\begin{array}{\|l} I_{x y y_{0}}=0 \\ I_{x y}=A b h / 4=b^{2} h^{2} / 4 \end{array}$
	$\begin{aligned} & A=h(a+b) / 2 \\ & y_{c}=\frac{h(2 a+b)}{3(a+b)} \end{aligned}$	$\begin{aligned} & I_{x_{e}}=\frac{h^{3}\left(a^{2}+4 a b+b^{2}\right)}{36(a+b)} \\ & I_{x}=\frac{h^{3}(3 a+b)}{12} \end{aligned}$	$\begin{aligned} & r_{x_{e}}^{2}=\frac{h^{2}\left(a^{2}+4 a b+b^{2}\right)}{18(a+b)} \\ & r_{x}^{2}=\frac{h^{2}(3 a+b)}{6(a+b)} \end{aligned}$	
	$\begin{aligned} & A=a b \sin \theta \\ & x_{c}=(b+a \cos \theta) / 2 \\ & y_{c}=(a \sin \theta) / 2 \end{aligned}$	$\begin{aligned} & I_{x_{e}}=\left(a^{3} b \sin ^{3} \theta\right) / 12 \\ & I_{y_{e}}=\left(a b \sin \theta\left(b^{2}+a^{2} \cos ^{2} \theta\right) / / 12\right. \\ & I_{x}=\left(a^{3} b \sin ^{3} \theta\right) / 3 \\ & I_{y}=\left[a b \sin \theta(b+a \cos \theta)^{2}\right] / 3 \\ & \quad-\left(a^{2} b^{2} \sin \theta \cos \theta\right) / 6 \end{aligned}$	$\begin{aligned} & r_{x_{0}}^{2}=(a \sin \theta)^{2} / 12 \\ & r_{y_{p}}^{2}=\left(b^{2}+a^{2} \cos ^{2} \theta\right) / 12 \\ & r_{x}^{2}=(a \sin \theta)^{2} / 3 \\ & r_{y}^{2}=(b+a \cos \theta)^{2} / 3 \\ & \quad-(a b \cos \theta) / 6 \end{aligned}$	$I_{x, y}-\left(a^{3} b \sin ^{2} \theta \cos \theta\right) / 12$

For curved surface, separate the pressure force into horizontal and vertical part. The horizontal part becomes plane surface and the vertical force becomes weight.
$F_{h}=F_{R}=F_{2}$ on the vertical projection =
$F_{v}=$ weight of fluid above $=\underline{\mathrm{W}}+F_{1}$

4. The vertical force on the section $A B C$?

$$
\begin{aligned}
F_{v} & =w+F_{1} \\
& =\left(\frac{1}{4} \pi \gamma_{11}^{2}\right) \times 1 m \times 9810+\begin{array}{c}
0.5 \mathrm{~m} \times 1 \times 1 \times \\
\mathrm{A} \\
1
\end{array} r_{w} \quad 9810 \\
& =126000_{n}
\end{aligned}
$$

5. Horizontal force on section $A B C$?

6. What is the force on F_{B} per 1 m into paper required to hold the gate?

(1) $P_{C}=(0,5+2) m \times 9810$
(2)

$$
\begin{aligned}
F_{P}=P_{c} A & =2.5 \times 9810 \times(\times) \\
& =24525 \mathrm{~N}
\end{aligned}
$$

(3) $Z^{*}=\frac{\frac{1}{12} b h^{3}}{h_{c} A}=\frac{\frac{1}{12} \times 1 \times 1^{3}}{2.5 \times((1 \times 1)}$

$$
\begin{aligned}
& =0.033 \mathrm{~m} \\
& F_{p} \times(0.5-0.033) \\
& =F_{B} \times 1 \mathrm{~m} \\
& F_{B}=11453 \mathrm{t}_{\#}
\end{aligned}
$$

The rectangular homogeneous gate shown above is 3.00 meters high and has a frictionless hinge at the bottom. If the fluid on the left side of the gate has a mass of 1,600 kilograms per cubic meter, the magnitude of the force F required per meter of width to keep the gate closed is most nearly
(A) $0 \mathrm{kN} / \mathrm{m}$
(B) $22 \mathrm{kN} / \mathrm{m}$

X(C) $24 \mathrm{kN} / \mathrm{m}$
(D) $220 \mathrm{kN} / \mathrm{m}$

ARCHIMEDES PRINCIPLE AND BUOYANCY

1. The buoyant force exerted on a submerged or floating body is equal to the weight of the fluid displaced by the body.
2. A floating body displaces a weight of fluid equal to its own weight; ie., a floating body is in equilibrium.

The center of buoyancy is located at the centroid of the displaced fluid volume.

In the case of a body lying at the interface of two immiscible fluids, the buoyant force equals the sum of the weights of the fluids displaced by the body.

$$
\begin{aligned}
F_{\text {buoyancy }} & =\text { fluid submerged } \\
& =\rho g \times \forall_{\text {submerged }} \\
& \uparrow
\end{aligned}
$$

96. A 24 cm long rod floats vertically in water. It has a $1 \mathrm{~cm}^{2}$ cross section and a specific gravity of 0.6. Most nearly, what length, L_{1} is submerged?

$$
?=\text { L }
$$

$$
\begin{aligned}
& w=F_{b} \\
& (24 \mathrm{~cm}) \times\left(1 \mathrm{~cm}^{2}\right) \times 0.6 \times 9810 \\
& = \\
& =L \times\left(1 \mathrm{~cm}^{2}\right) \times 9810 \\
& \rightarrow L
\end{aligned}
$$

7. A block-shape canoe has a 0.25 m draft shown empty. If a person of 750 kg mass is to sit inside, will the canoe (a) float (b) sink (c) neutral (water will just reach the brim)?

$$
\begin{aligned}
& F_{\text {max }, b}>w_{\text {cane }}+w_{\text {person }} \\
& \| \quad \begin{array}{l}
11 \\
(0.25 \mathrm{~m})(2 \mathrm{~m}) \times(\mathrm{m}) \times 9810+150 \mathrm{~kg} \times 9.8=6315 \mathrm{~N} \\
(\mathrm{~g})
\end{array} \\
& \begin{array}{l}
(0.5 \mathrm{~m}) \times(2 \mathrm{~m}) \times((\mathrm{m}) \times 9810 \\
11 \\
9810 \mathrm{~N}
\end{array}
\end{aligned}
$$

ONE-DIMENSIONAL FLOWS

The Continuity Equation

So long as the flow Q is continuous, the continuity equation, as applied to one-dimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point, $A_{1} \mathrm{v}_{1}=A_{2} \mathrm{v}_{2}$.
(c) $Q=A v$
(2) $\dot{m}=\bar{\rho} \bar{Q}=\rho A v$, where $V Q=$ volumetric flow rate,
$\sqrt{\dot{m}}=$ mass flow rate,
$A=$ cross section of area of flow,
$\mathrm{v}=$ average flow velocity, and
$\rho=$ the fluid density.
For steady, one-dimensional flow, m is a constant. If, in addition, the density is constant, then Q is constant.

Assuming a flow of $40 \mathrm{~m}^{3} / \mathrm{min}$, the velocity $(\mathrm{m} / \mathrm{s})$ through the pipe is most nearly: (A) 9.4 The diameter of the pipe is 0.3 m .
(B) 2.4
(C) 1.4
(D) 0.047

() $Q=A \mathrm{v}$
(2) $\dot{m}=\rho \bar{Q}=\rho A \mathrm{v}$, where
$\mathrm{V} Q=$ volumetric flow rate,
$\sqrt{\dot{m}}=$ mass flow rate,
$A=$ cross section of area of flow,
$\mathrm{v}=$ average flow velocity, and
$\rho=$ the fluid density.
12. Calculate the density at B if the flow is steady state.

At A, diameter $=10 \mathrm{~cm}$, velocity $=15 \mathrm{~m} / \mathrm{s}$, density $=1 \mathrm{~kg} / \mathrm{m}^{3}$ At B , diameter $=18 \mathrm{~cm}$, velocity $=6 \mathrm{~m} / \mathrm{s}$, density $=? \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{array}{cl}
\dot{m}_{A}=\dot{m}_{B} & d_{B}=18 \mathrm{~cm} \\
\rho_{A} V_{A} A_{A}=\rho_{B} V_{B} A_{B} & V_{B}=6 \mathrm{~m} / \mathrm{s} \\
\left(1 \frac{\mathrm{~kg}}{\mathrm{~m}}\right) \times 15^{2} / \mathrm{m} \times \frac{1}{4} \pi\left(\frac{10}{100}\right)=\rho_{B} \times 6 \mathrm{~m} / \mathrm{s} \times \frac{1}{4} \pi\left(\frac{18}{100}\right)^{2} \\
\Rightarrow & \rho_{B}=0.77 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

The Field Equation is derived when the energy equation is applied to one-dimensional flows. Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system,
$\frac{P_{2}}{\gamma}+\frac{\mathrm{v}_{2}^{2}}{2 g}+z_{2}=\frac{P_{1}}{\gamma}+\frac{\mathrm{v}_{1}^{2}}{2 g}+z_{1}$ or
$\frac{P_{2}}{\rho}+\frac{\mathrm{v}_{2}^{2}}{2}+z_{2} g=\frac{P_{1}}{\rho}+\frac{\mathrm{v}_{1}^{2}}{2}+z_{1} g$, where
$P_{1}, P_{2}=$ pressure at sections 1 and 2 ,
$\mathrm{v}_{1}, \mathrm{v}_{2}=$ average velocity of the fluid at the sections,
$z_{1}, z_{2}=$ the vertical distance from a datum to the sections (the potential energy),
$\gamma \quad=$ the specific weight of the fluid (ρg), and
$g \quad=$ the acceleration of gravity.

FLUID MEASUREMENTS

The Pitot Tube - From the stagnation pressure equation for an incompressible fluid,

$$
\mathrm{v}=\sqrt{(2 / \rho)\left(p_{0}-p_{s}\right)}=\sqrt{2 g\left(p_{0}-p_{s}\right) / \gamma}, \text { where }
$$

$\mathbf{v}=$ the velocity of the fluid,
$p_{0}=$ the stagnation pressure, and
$p_{s}=$ the static pressure of the fluid at the elevation where the measurement is taken.

For a compressible fluid, use the above incompressible fluid equation if the Mach number ≤ 0.3.

- Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 195428

8. The velocity at A is $1 \mathrm{~m} / \mathrm{s}$. What is velocity at B if the flow is incompressible and frictionless (no energy loss)?

$$
\begin{gathered}
\frac{P_{A}}{r}+\frac{V_{A}^{2}}{2 g}+Z_{A}^{2}=\frac{P_{B}}{r}+\frac{V_{B}^{2}}{2 g}+2 Z_{B}^{7} \\
\frac{7000 P_{a}}{9810}+\frac{\left(1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \times 9.81}=\frac{P_{B}^{311}}{9810}+\frac{V_{B}^{2}}{2 \times 9.81} \rightarrow V_{B}=2.97 \mathrm{~m} / \mathrm{s} \\
P_{B}+9810 \times 0.5 \mathrm{~m}-\left(\frac{6 \mathrm{~cm}}{100}\right) \times r_{\mathrm{Hg}_{g}}=0 \rightarrow P_{\text {(air) }}=3100 \mathrm{~Pa} \\
13.6 \times 9810
\end{gathered}
$$

9. The pipe centerline pressure just below the manometer (static tube) is 19 k Pa (gage). How high will the liquid rise in the manometer tube?

$$
\begin{aligned}
& 19000 \mathrm{~Pa} \\
& \Rightarrow h=2.16 m_{\#}
\end{aligned}
$$

10. A Pitot/static tube inserted in a water flow as shown reads a static pressure $50 \mathrm{~mm}(\mathrm{Hg})$ and a stagnation pressure $55 \mathrm{~mm}(\mathrm{Hg})$. What is the water velocity?

$$
\begin{gathered}
\frac{P_{A}}{r}+\frac{V_{A}^{2}}{2 g}+\not Z_{A}=\frac{P_{B}}{r}+\frac{V_{8}^{2}}{2 g}+Z_{B}^{7} \\
\frac{\frac{50 \mathrm{~mm}}{1000} \times 13.6 \times 9810}{9810}+\frac{V_{A}^{2}}{2 \times 9.81}=\frac{\frac{55 \mathrm{~mm}}{1000} \times 13.6 \times 9810}{9810}
\end{gathered}
$$

$$
V_{A}=1.15 \mathrm{~m} / \mathrm{s}
$$

38. A perfect venturi with a throat diameter of 1.8 cm is placed horizontally in a pipe with a 5 cm inside diameter. Eight kg of water flow through the pipe each second. What is most nearly the difference between the pipe and venturi throat static pressures?
(A) 30 kPa
(B) 490 kPa
(C) 640 kPa
(D) 970 kPa

Venturi Meters
$Q=\frac{C_{\mathrm{v}} A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}$, where
$C_{\mathrm{v}}=$ the coefficient of velocity, and $\gamma=\rho \mathrm{g}$.

The above equation is for incompressible fluids.

$\mathrm{d} 1=5 \mathrm{~cm}$ di 21.8 cm

$$
\begin{aligned}
& V_{A}\left(\frac{1}{4} \pi\left(\frac{5}{100}\right)\right)=V_{B}\left(\frac{1}{4} \pi\left(\frac{1.8)^{2}}{100}\right)\right. \\
& 8 \frac{k g}{5 e c}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \times V_{A} \times \frac{1}{4} \pi\left(\frac{5}{\left(\frac{5}{100}\right)^{2}}\right. \\
& \rightarrow V_{1}=V_{A}=4.07 \mathrm{~m} / \mathrm{s} \\
& 8 \frac{\mathrm{~kg}}{\sec }=1000 \times V_{B} \times \frac{1}{4} \pi\left(\frac{1.8}{100}\right)^{2} \\
& \Rightarrow V_{B}=31.43 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\rightarrow P_{1}-P_{2}=486 \mathrm{~Pa}
$$

14. A venture meter is used to measure flow velocity. Given the manometer reading as shown below, what is the velocity at section A ?

Orifices The cross-sectional area at the vena contracta A_{2} is characterized by a coefficient of contraction C_{c} and given by $C_{c} A$.

$$
Q=C A_{0} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}
$$

where C, the coefficient of the meter (orifice coefficient), is given by

$$
C=\frac{C_{\mathrm{v}} C_{c}}{\sqrt{1-C_{c}^{2}\left(A_{0} / A_{1}\right)^{2}}}
$$

| ORIIICES AND THEAR NOMINAL COEFFICIENTS | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | SHARP
 EDED | ROUNDED | SHORT TUBE | BORDA |
| | | | | |

For incompressible flow through a horizontal orifice meter installation

$$
Q=C A_{0} \sqrt{\frac{2}{\rho}\left(p_{1}-p_{2}\right)}
$$

Submerged Orifice operating under steady-flow conditions:

in which the product of C_{c} and C_{v} is defined as the coefficient of discharge of the orifice.

Orifice Discharging Freely into Atmosphere

-

$$
Q=C A_{0} \sqrt{2 g h}
$$

in which h is measured from the liquid surface to the centroi34 of the orifice opening.

EGL: Energy Grade Line

$$
\frac{p}{\gamma}+\frac{v^{2}}{2 g}+z
$$

(total head line)

HGL: Hydraulic Grade Line

$$
\frac{p}{\gamma}+z
$$

(piezometric head line)

Example EGL \& HGL

STEADY, INCOMPRESSIBLE FLOW IN CONDUITS

AND PIPES

The energy equation for incompressible flow is

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\underbrace{\frac{p_{2}}{\gamma}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}} \underbrace{\text { or }} \\
& \frac{p_{1}}{\rho g}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}
\end{aligned}
$$

$h_{f}=\frac{\text { the head loss, considered a friction effect, }}{\text { remaining terms are defined above. }}$
If the cross-sectional area and the elevation of the pipe are the same at both sections (1 and 2), then $z_{1}=z_{2}$ and $\mathrm{v}_{1}=\mathrm{v}_{2}$.
The pressure drop $p_{1}-p_{2}$ is given by the following:

$$
p_{1}-p_{2}=\gamma h_{f}=\rho g h_{f}
$$

The Darcy-Weisbach equation is

$$
h_{f}=f \frac{L}{D} \frac{\mathrm{v}^{2}}{2 g} \text {, where }
$$

(f) $=f(\mathrm{Re}, e / D)$, the Moody or Darcy friction factor,
$D=$ diameter of the pipe,
$\underline{L}=$ length over which the pressure drop occurs,
$e=$ roughness factor for the pipe, and all other symbols are defined as before.
An altemative formulation employed by chemical engineers is

$$
h_{f}=\left(4 f_{\text {Fanning }}\right) \frac{L \mathrm{v}^{2}}{D 2 g}=\frac{2 f_{\text {Fanning }} L \mathrm{v}^{2}}{D g}
$$

Fanning friction factor, $f_{\text {Fanning }}=\frac{f}{4}$
A chart that gives f versus Re for various values of e / D, known as a Moody or Stanton diagram, is available at the end of this section.

Friction Factor for Laminar Flow

The equation for Q in terms of the pressure drop Δp_{f} is the Hagen-Poiseuille equation. This relation is valid only for flow in the laminar region.

$$
Q=\frac{\pi R^{4} \Delta p_{f}}{8 \mu L}=\frac{\pi D^{4} \Delta p_{f}}{128 \mu L}
$$

Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section uses the hydraulic radius R_{H}, or the hydraulic diameter D_{H}, as follows

$$
R_{H}=\frac{\text { cross-sectional area }}{\text { wetted perimeter }}=\frac{D_{H}}{4}
$$

Moody Diagram

13. Calculate the frictional head loss per 10 m of 30 cm -diameter concrete pipe $(\varepsilon=0.5 \mathrm{~mm})$. The fluid is stand air at $15^{\circ} \mathrm{C}$ and velocity 4

$$
\begin{aligned}
& f=f\left(R_{e}, \frac{e}{D}\right) \\
& \frac{V D}{\mu} \quad \frac{0.5 \mathrm{~mm}}{30 \mathrm{~cm}} \\
& \frac{4 \mathrm{~m} / \mathrm{s} \times \frac{30 \mathrm{~cm}}{100}}{1.46 \times 10^{-5}} \frac{0.00167}{\square} \\
& 11 \\
& h_{L}=f \frac{L}{1} \frac{v^{2}}{2 g}=0.024 \frac{10 \mathrm{~m}}{\frac{30}{100}} \frac{(4 \mathrm{~m} / \mathrm{s})^{2}}{2 \times 9.81}=0.67 \mathrm{~m} \text { \# }
\end{aligned}
$$

Minor Losses in Pipe Fittings, Contractions, and Expansions

Head losses also occur as the fluid flows through pipe fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe contractions and expansions.
$\frac{p_{1}}{\gamma}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fiting }}$
$\frac{p_{1}}{\rho g}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fitting }}$, where
$h_{f, \text { fitting }}=C \frac{\mathrm{v}^{2}}{2 g}$, and $\frac{\mathrm{v}^{2}}{2 g}=1$ velocity head Specific fittings have characteristic values of C, which will be provided in the problem statement. A generally accepted nominal value for head loss in well-streamlined gradual contractions is

The head loss at either an entrance or exit of a pipe from or to a reservoir is also given by the $h_{f \text { fitting }}$ equation. Values for C for various cases are shown as follows.

$$
h_{f \text { fitting }}=0.04 \mathrm{v}^{2} / 2 g
$$

$$
\begin{aligned}
& \frac{p_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}+h_{\text {pump }}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B}+h_{f}+h_{f, \text { fitting }} h_{\text {turbine }} \\
& \dot{W}=Q \sqrt{\underline{h}} \underline{\underline{\eta}}=Q \rho g h / \eta \text {, where } \\
& Q=\text { volumetric flow (} \mathrm{m}^{3} / \mathrm{s} \text { or } \mathrm{cfs} \text {), } \\
& h=\operatorname{head}(\mathrm{m} \text { or } \mathrm{ft}) \text { the fluid has to be lifted, } \\
& \eta=\text { efficiency, and } \\
& \dot{W}=\text { power (watts or ft-lbf/sec). } \\
& \text { Turbine: } \\
& \dot{\underline{W}}=Q \gamma h \eta \\
& \eta=\text { efficiency, and } \\
& \dot{W}=\text { power (watts or } \mathrm{ft}-\mathrm{lbf} / \mathrm{sec}) \text {. }
\end{aligned}
$$

The drag force F_{D} on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is

$$
F_{D}=\frac{C_{D} \rho \mathrm{v}^{2} A}{2}, \text { where }
$$

$C_{D}=$ the drag coefficient,
$\mathrm{v}=$ the velocity $(\mathrm{m} / \mathrm{s})$ of the flowing fluid or moving object, and
$A=$ the projected area $\left(\mathrm{m}^{2}\right)$ of blunt objects such as spheres, ellipsoids, disks, and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow.

For flat plates placed parallel with the flow
$C_{D}=1.33 / \operatorname{Re}^{0.5}\left(10^{4}<\operatorname{Re}<5 \times 10^{5}\right)$
$C_{D}=0.031 / \operatorname{Re}^{1 / 7}\left(10^{6}<\operatorname{Re}<10^{9}\right)$
The characteristic length in the Reynolds Number (Re) is the length of the plate parallel with the flow. For blunt objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) which is perpendicular to the flow.
67. The drag coefficient for a car with a frontal area of $27 \mathrm{ft}^{2}$ is 0.32 . Assuming the density of air to be 2.4×10^{-3} slugs $/ \mathrm{ft}^{3}$, the drag force (lb) on this car when driven at 60 mph against a head wind of 20 mph is most nearly
-A. 37B. 83C. 148D. 185

Note: Intermediate divisions are $2,4,6$, and 8

Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement, or contraction in a pipe line may be computed using the impulse-momentum principle.

$p_{1} A_{1}-p_{2} A_{2} \cos \alpha-\boldsymbol{F}_{x}=Q \rho\left(\mathrm{v}_{2} \cos \alpha-\mathrm{v}_{1}\right)$

$$
\boldsymbol{F}_{y}-W-p_{2} A_{2} \sin \alpha=Q \rho\left(\mathrm{v}_{2} \sin \alpha-0\right) \text {, where }
$$

$\boldsymbol{F}=$ the force exerted by the bend on the fluid (the force exerted by the fluid on the bend is equal in magnitude and opposite in sign), \boldsymbol{F}_{x} and \boldsymbol{F}_{y} are the x-component and y-component of the force,

F>0 push object to right $\mathrm{F}<0$ push object to left

Deflectors and Blades

Fixed Blade
-

$$
\begin{aligned}
& -\boldsymbol{F}_{x}=Q \rho\left(\mathrm{v}_{2} \cos \alpha-\mathrm{v}_{1}\right) \\
& \boldsymbol{F}_{y}=Q \rho\left(\mathrm{v}_{2} \sin \alpha-0\right)
\end{aligned}
$$

Moving Blade

$\mathrm{v}=$ the velocity of the blade.
15. A horizontal nozzle sends out a water jet at $10 \mathrm{~m} / \mathrm{s}$ towards the vertical plate as shown. If the nozzle diameter is 1 cm , find the force F required to hold the plate stationary.

16. The cart is originally locked. Incompressible airflow passes through the fixture as shown. Which way will the cart go if the wheels are released?
(a) to the left (b) to the right (c) motionless

2. Water flows at a steady rate through the horizontal shown. The following data apply the figure. (a) What is V_{3} ? (b) What is the horizontal thrust on the flange $A B$?

DIMENSIONAL HOMOGENEITY AND

 DIMENSIONAL ANALYSISEquations that are in a form that do not depend on the fundamental units of measurement are called dimensionally homogeneous equations. A special form of the dimensionally homogeneous equation is one that involves only dimensionless groups of terms.
Buckingham's Theorem: The number of independent dimensionless groups that may be employed to describe a phenomenon known to involve n variables is equal to the number ($n-\bar{r}$), where \bar{r} is the number of basic dimensions (i.e., $\mathrm{M}, \mathrm{L}, \mathrm{T}$) needed to express the variables dimensionally.

- Dimensional equation:

$$
D=f(d, V, \rho, \mu)
$$

- Buckingham's Pi Theorem:

$$
D \doteq M L T^{-1}, d \doteq L, V \doteq L T^{-1}, \rho \doteq M L^{-3}, \mu \doteq M L^{-1} T^{-1}
$$

Thus,

$$
\begin{aligned}
& n=5(D, d, V, \rho, \mu) \\
& r=3(M, L, T) \\
& \therefore k=n-r=2 \text { Pi parameters } \\
& \Pi_{1}=\frac{D}{\rho U^{2} D^{2}}\left(\text { or } \frac{D}{\frac{1}{2} \rho U^{2} A}\right)=C_{D} \\
& \Pi_{2}=\frac{\rho U D}{\mu}=R e
\end{aligned}
$$

Dimensionless parameters

SIMILITUDE

In order to use a model to simulate the conditions of the prototype, the model must be geometrically, kinematically, and dynamically similar to the prototype system.

To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written must be the same in both the model and the prototype. Thus, dynamic similarity between two flow pictures (when all possible forces are acting) is expressed in the five simultaneous equations below.
$\left[\frac{F_{I}}{F_{p}}\right]_{p}=\left[\frac{F_{I}}{F_{p}}\right]_{m}=\left[\frac{\rho \mathrm{v}^{2}}{p}\right]_{p}=\left[\frac{\rho \mathrm{v}^{2}}{p}\right]_{m}$
$\left[\frac{F_{I}}{F_{V}}\right]_{p}=\left[\frac{F_{I}}{F_{V}}\right]_{m}=\left[\frac{\mathrm{v} l \rho}{\mu}\right]_{p}=\left[\frac{\mathrm{v} l \rho}{\mu}\right]_{m}=[\operatorname{Re}]_{p}=[\mathrm{Re}]_{m}$
$\left[\frac{F_{I}}{F_{G}}\right]_{p}=\left[\frac{F_{I}}{F_{G}}\right]_{m}=\left[\frac{\mathbf{v}^{2}}{l g}\right]_{p}=\left[\frac{\mathbf{v}^{2}}{l g}\right]_{m}=[\mathrm{Fr}]_{p}=[\mathrm{Fr}]_{m}$
$\left[\frac{F_{I}}{F_{E}}\right]_{p}=\left[\frac{F_{I}}{F_{E}}\right]_{m}=\left[\frac{\rho \mathrm{v}^{2}}{E_{v}}\right]_{p}=\left[\frac{\rho \mathrm{v}^{2}}{E_{v}}\right]_{m}=[\mathrm{Ca}]_{p}=[\mathrm{Ca}]_{m}$
$\left[\frac{F_{I}}{F_{T}}\right]_{p}=\left[\frac{F_{I}}{F_{T}}\right]_{m}=\left[\frac{\rho l \mathrm{v}^{2}}{\sigma}\right]_{p}=\left[\frac{\rho l \mathrm{v}^{2}}{\sigma}\right]_{m}=[\mathrm{We}]_{p}=[\mathrm{We}]_{m}$
$F_{I}=$ inertia force,
$F_{P}=$ pressure force,
$F_{V}=$ viscous force,
$F_{G}=$ gravity force,
$F_{E}=$ elastic force,
$F_{T}=$ surface tension force,
$\mathrm{Re}=$ Reynolds number,
$\mathrm{We}=$ Weber number,
$\mathrm{Ca}=$ Cauchy number,
Fr $=$ Froude number,
$l=$ characteristic length,
v = velocity,
$\rho=$ density,
$\sigma=$ surface tension,
$E_{v}=$ bulk modulus,
$\mu=$ dynamic viscosity,
p = pressure, and
$g=$ acceleration of gravity.

Example
If a flow rate of $0.2 m^{3} / s$ is measured over a 9 tol scale model of a weir, what flow rate can be expected on the prototype?
Flow over a weir is an openchannel flow. Use Froude number for modeling.
If the model force is at 1000 N , what will be the force on the prototype?
3. We wish to determine the wind force on a water tower when a wind normal to the centerline of the water tower is $60 \mathrm{~km} / \mathrm{h}$. To do this we examine in a water tunnel a geometrically similar model reduced by $1 / 20$ scale. (a) What should the water tunnel veoclity be if Reynolds number is used for dynamic similarity?
(b) If the force on the model is measured at 100 N , what is the projected force on the prototype
(c) What is the expected ratio of torque about the base of the tower? i.e. prototype torque /model torque

17. Ignore the mass and friction of the sprinklers, which one spins faster? The sprinkler nozzle diameters are identical. The velocity of the jet are also identical.
(a) left one (b) right one (c) the same

Additional Problems

ID MECHANICS AND FLUID MACHINERY

,blew 40

splice, 10 cm in diameter, flouts in $20^{\circ} \mathrm{C}$ water with If of its volume submerged. The density of water at ${ }^{2} \mathrm{C}$ is $998 \mathrm{~kg} / \mathrm{m}^{3}$. The mass of the sphere is most orly
(A) 0.20 kp
(B) 0.26 kg
(C) 10.30 kg
(D) 2.6 kg
button
e buoyant fores is equal to the weight of the sphere.

$$
\begin{aligned}
W: & =F_{b}=m! \\
& =p_{\text {water }} V g
\end{aligned}
$$

e subnergeal volume is

Page 63

$$
V=\frac{1}{2} V_{\text {spleen }}
$$

Neglecting the weight of the gate and any friction at the hinge, the force F is most nearly
(A) 21 kN
(B) 32 kN
(C) 36 kN
(D) 43 kN

The location of this fore e is

$$
\sum M_{\text {hing } n}=0
$$

$$
F_{\text {water }}\left(y_{\text {c. }}-5 \mathrm{~m}\right)=F(3 \mathrm{~m})
$$

$$
\begin{aligned}
F & =\frac{(67633 \mathrm{~N})(6.6154 \mathrm{~m}-5 \mathrm{~m})}{3 \mathrm{~m}} \\
& =36418 \mathrm{~N}(36 \mathrm{kN})
\end{aligned}
$$

The answer is C.

$$
\begin{aligned}
& y_{\mathrm{cp}}=\frac{I_{\mathrm{CK}}}{y_{\mathrm{cK}} \Lambda}+y_{\mathrm{ck}} \\
& =\frac{\frac{1}{12} b / h^{3}}{y_{c k} b / h^{3}}+y_{c x} \\
& =\frac{\binom{1}{12}(1.5 \mathrm{~m})(3 \mathrm{~m})^{3}}{(6.5 \mathrm{~m})(0.5 \mathrm{~m})(3 \mathrm{~m})} \\
& \Rightarrow 6.615 .4 \mathrm{~m}
\end{aligned}
$$

Problem 42

Water flows steadily through the contraction shown.

The velocity at section 1 is most nearly
(A) $1.0 \mathrm{~m} / \mathrm{s}$
(B) $1.4 \mathrm{~m} / \mathrm{s}$
(C) $1.8 \mathrm{~m} / \mathrm{s}$
(D) $2.2 \mathrm{~m} / \mathrm{s}$

Solution

$$
\text { Page } 64863
$$

$$
\begin{aligned}
& \frac{p_{1}}{\rho_{w} g}+\frac{\mathrm{v}_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho_{w} g}+\frac{\mathrm{v}_{2}^{2}}{2 g}+z_{2} \\
& z_{1}=z_{2} \\
& \mathrm{v}_{2}=\left(\frac{D_{1}}{D_{2}}\right)^{2} \mathrm{v}_{1}=\left(\frac{10 \mathrm{~cm}}{5 \mathrm{~cm}}\right)^{2} \mathrm{v}_{1} \\
& \\
& =4 \mathrm{v}_{1}
\end{aligned}
$$

Substituting into Bernoulli's equation,

$$
\begin{aligned}
\frac{p_{1}-p_{2}}{p_{\mathrm{w}}!} & =\frac{16 \mathrm{v}_{\mathrm{I}}^{2}-\mathrm{v}_{\mathrm{I}}^{2}}{2!}=\frac{15 \mathrm{v}_{\mathrm{I}}^{2}}{2 g} \\
p_{1}-p_{2} & =h g\left(\rho_{\mathrm{Hk}}-p_{w}\right) \\
\frac{p_{1}-p_{2}}{\rho_{\mathrm{ww}}} & =\left(\frac{p_{\mathrm{Ig}}}{p_{w}}-1\right) h \\
\frac{15 \mathrm{v}_{\mathrm{w}}^{2}}{2 \eta} & =\left(\frac{p_{\mathrm{Hg}}}{\rho_{\mathrm{w}}}-1\right) h \\
v_{1} & =\sqrt{\left(\frac{2 g}{15}\right)\left(\frac{p_{\mathrm{Hg}}}{\rho_{w}}-1\right) h} \\
& =\sqrt{\left(\frac{(2)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{15}\right)(13.58-1)(0.06 \mathrm{~m})} \\
& =0.9936 \mathrm{~m} / \mathrm{s}(1.0 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

The answer is A.

Professional Publications, Inc.

Problem 43
Water flows in an inclined constant-dianeter pipe. At point $1, p_{1}=235 \mathrm{kPa}$, aud the elevation is $z_{1}=20 \mathrm{~m}$ At point $2, p_{2}=200 \mathrm{kPa}$, nut $z_{2}=22 \mathrm{~m}$. The friction head loss between the two sections is most nearly
(A) 0.80 m
(B) 1.2 m
(C) 1.6 m
(D) 1.9 m

Solution

$$
\text { page } 65
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
p_{1} \\
p g \\
p
\end{array} \frac{v_{1}^{2}}{2 q}+z_{1}=\frac{p_{2}}{p g}+\frac{v_{2}^{2}}{2 q}+z_{2}+h_{f_{1-2}} \\
& v_{1}= \\
& v_{2} \\
& h_{f_{1}-2}=\frac{p_{1}-p_{2}}{p g}+z_{1}-z_{2}
\end{aligned}
$$

$$
=\frac{(235 \mathrm{kPa}-200 \mathrm{kPr})\left(1000 \frac{\mathrm{~Pa}}{\mathrm{kPr}}\right)}{\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}
$$

$$
+20 \mathrm{~m}-22 \mathrm{~m}
$$

$$
=1.568 \mathrm{~m}(1.6 \mathrm{~m})
$$

The answer is C .

Problem 44

Water at $32^{\circ} \mathrm{C}$ flows at $2 \mathrm{~m} / \mathrm{s}$ in a pipe having an inside diameter of 3 cm . The visensity of the water is $769 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$, nut the density is $995 \mathrm{~kg} / \mathrm{m}^{3}$. If the relative roughness of the pipe is 0.002 , the friction fruttor is most nearly
(A) 0.025
(B) 0.030
(C) 0.0335
(D) 0.0200
page 71

Solution

The kinematic: viscosity is

$$
\begin{aligned}
\nu & =\frac{\mu}{\rho}=\frac{769 \times 10^{n} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}{995 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}} \\
& =0.773 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

The Reynolds number is

$$
\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{v} D}{\nu}=\frac{\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.03 \mathrm{~m})}{0.773 \times 10^{-8} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}
$$

$$
=77620 \quad \text { [turbulent flow] }
$$

From the Moody diagram, $f=0.0254$

A river has a continuous water flow of $10 \mathrm{~m}^{3} / \mathrm{s}$ between two bridges that are 1000 m apart. At bridge A , upstream, the river has a cross-sectional area of $150 \mathrm{~m}^{2}$, while at bridge B, downstream, the river has a crosssectional area of $100 \mathrm{~m}^{2}$. The increase in water velocity between the two bridges is most nearly
\checkmark (A) $0.033 \mathrm{~m} / \mathrm{s}$
(B) $0.067 \mathrm{~m} / \mathrm{s}$
(C) $0.075 \mathrm{~m} / \mathrm{s}$
(D) $0.130 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
V_{A}-V_{B} & =\frac{Q_{A}}{A_{A}}-\frac{\theta_{B}}{A_{B}} \\
& =\frac{10}{150}-\frac{10}{100} \\
& =-0.033
\end{aligned}
$$

2 Water flows at $20^{\circ} \mathrm{C}$ through 10 m of 8 mm inside diameter smooth glass pipe at $2.0 \mathrm{~m} / \mathrm{s}$. The friction factor for glass is 0.0180 . The head loss caused by friction

$$
\begin{aligned}
\text { Page } 65: h_{f}=f \frac{v^{2}}{2 g} \frac{L}{0} & =0.018 \frac{2^{2}}{2 \times 9.81} \times \frac{10}{\frac{8}{1000}} \\
& =4.59 \mathrm{~m}
\end{aligned}
$$

3 A centrifugal pump lifts groundwater 100 m vertically to a surface storage tank at a rate of $0.25 \mathrm{~m}^{3} / \mathrm{s}$. The purnp has a 75% efficiency. The power required to drive this pump is most nearly
$x(A) 330 \mathrm{~kW}$
(B) 350 kW
(C) 480 kW
(D) 500 kW

$$
\begin{aligned}
\text { Page } 66: \dot{w} & =\frac{Q Y^{2} h}{\eta} \\
& =\frac{0.25 \times 9810 \times 100}{0.75} \\
& =327 \mathrm{kw}
\end{aligned}
$$

A capillary tube 3.8 mm in diameter is placed in a beaker of $40^{\circ} \mathrm{C}$ distilled water. The surface tension is $0.0696 \mathrm{~N} / \mathrm{m}$, and the angle made by the water with the wetted tube wall is negligible. The specific weight of water at this temperature is $9.730 \mathrm{kN} / \mathrm{m}^{3}$. The height to which the water will rise in the tube is most nearly
(A) 1.2 mm Page $62: \quad$

(B) 3.6 mm	$=\frac{4 \sigma \cos \beta}{r \alpha}$
\times(C) 7.5 mm (D) 9.2 mm	
	$=\frac{4 \times 0.0696 \times \cos 0^{\circ}}{9730 \times \frac{3.8}{1000}}$
	$=0.0075 \mathrm{~m}$
	$=7.5 \mathrm{~mm}$

A reservorr with a water surface at an elevation of 200 m drains through a 1 m inside diauncter pipe with the outlet at an elevation of 180 m . The pipe outlet empties to atmospheric pressure. The total head losses in the pipe and fittings are 18 m . Assume a steady, ncompressible flow of $4.92 \mathrm{~m}^{3} / \mathrm{s}$.

A turbine is installed at the pipe outlet. The chosen turbine has an efficiency of 85% and does not add any head loss to the system. The expected power output of

$$
\begin{aligned}
& \text { the turbine is most nearly } \\
& \text { (A) } 82 \mathrm{~kW} \text { page } 65.0 \\
& \text { (B) } 96 \mathrm{~kW} \\
& \text { (C) } 100 \mathrm{~kW} \\
& \text { (D) } 120 \mathrm{~kW}
\end{aligned}
$$

Problems 10 and 11 are based on the following informa- 492×981 tion.
A circular sewer with a 1.5 mo inside diameter is designed $=8205 / \mathrm{w}$ for a flow rate of $15 \mathrm{~m}^{3} / \mathrm{s}$ when flowing full. Assume that the Manning coughness coefficient and Darcy fric tion factor are constant with depth of How.

6 The flow rate when the depth of how is 0.50 m is most nearly
(A) $1.7 \mathrm{~m}^{3} / \mathrm{s}$. Page $180: \frac{d}{D}=\frac{a 5}{1.5}=\frac{1}{3}$
$v(B) 3.4 \mathrm{~m}^{3} / \mathrm{s}$
$\begin{aligned} \text { (C) } 5.0 \mathrm{~m}^{3} / \mathrm{s} \\ \text { (D) } 7.5 \mathrm{~m}^{3} / \mathrm{s}\end{aligned} \rightarrow \frac{Q}{Q_{\text {full }}}=0.23 \rightarrow Q=0.23 \times 15$
7.

The velocity of flow when the depth of flow is 0.50 m
is most nearly
Paje 160:
(A) $2.8 \mathrm{~m} / \mathrm{s}$
(B) $4.2 \mathrm{~m} / \mathrm{s}$
(C) $4.8 \mathrm{~m} / \mathrm{s}$
(D) $6.6 \mathrm{~m} / \mathrm{s}$

$$
\frac{v}{v_{f}}=0.8 \rightarrow v=0.8 \times \frac{15}{\frac{\pi}{4}(1.5)^{2}}
$$

(1) $\frac{10}{}$ mana
$=6.8$
8 An open tank contains 8.0 m of water beneath

- 1.5 m of kerosene. Kerosene has a specific weight of $8.0 \mathrm{kN} / \mathrm{m}^{3}$. The pressure at the kerosene/water inter-
face is most nearly

(A) 3.5 kPa | C | 1.5 m |
| :--- | :--- |
| $\mathrm{H}_{3} \mathrm{O}$ | 8 m |
| P^{2} | |

$P=r_{k} h$
(B) 5.0 kPa
$=8000 \times 1.5 \mathrm{~m}$
(D) 12 kPa
Page 62:
$=12000 P_{a}=12 \mathrm{KPa}$

9
Water flows through a 30.0 cm inside diameter pipe at an initial velocity of $1.9 \mathrm{~m} / \mathrm{min}$. The pipe diameter subsequently reduces to 15.0 cm before discharging into an open channel. The discharge velocity is most nearly

(A) $3.8 \mathrm{~m} / \mathrm{min}$	Page: $63 \quad A_{1} V_{1}=A_{2} V_{2}{ }^{2}$
x (B) $7.5 \mathrm{~m} / \mathrm{min}$	$\pi(30)^{2} \times 1.9=\frac{\pi}{2}(15) \times V$
(C) $8.6 \mathrm{~m} / \mathrm{min}$	
(D) $9.3 \mathrm{~m} / \mathrm{min}$	$\rightarrow v_{2}=7-6 \mathrm{~m} / \mathrm{min}$

The rectangular homogeneous gate shown above is 3.00 meters high and has a frictionless hinge at the bottom. If the fluid on the left side of the gate has a mass of 1,600 kilograms per cubic meter, the magnitude of the force F required per neter of width to keep the gate closed is most nearly
(A) $0 \mathrm{kN} / \mathrm{m}$
(B) $22 \mathrm{kN} / \mathrm{m}$
(C) $24 \mathrm{kN} / \mathrm{m}$
(D) $220 \mathrm{kN} / \mathrm{m}$

Which of the following statements is true of viscosity?
!
(A) It is the ratio of inertial to viscous force.
(B) It always has a large effect on the value of the friction factor.
x (C) It is the ratio of the shear stress to the rate of shear defonnation.
(D) It is usually low when turbulent forces predominate.

(1) Page 63: $\quad P_{c}=v z_{c} \sin \alpha$

$$
=1600 \times 9.81 \times 1.5 \times \sin 90^{\circ}
$$

$$
=23544 \mathrm{~N} / \mathrm{m}^{2}
$$

$$
F_{p}=P_{c} A=23544 \times 3 \times 1
$$

$=70632 \mathrm{~N}$

$$
\text { - } z^{*}=\frac{r I_{y c} \sin \alpha}{P_{c} A} \quad\left(\text { see Page } 51 \text { for } I_{y c}\right)
$$

$=\frac{1600 \times 9.81 \times \frac{1 \times 3^{3}}{12} \times \sin 90}{70632}$

$$
=0.5 \mathrm{~m}
$$

$l=1.5-0.5=1 \mathrm{~m}$

$$
F \times 3=70632 \times 1 \rightarrow F=23544
$$

$$
=23.5 \mathrm{kN}
$$

Page $62: \tau_{t}=\mu \frac{d v}{d y}$

$$
\rightarrow \mu=\frac{\tau_{t}}{\frac{d v}{d y}}=\frac{\text { shear stress }}{\text { rate of shear defformeation }}
$$

12.

$$
\begin{aligned}
& \text { Page } 66: \\
& \begin{aligned}
&-F_{x}=Q \rho\left(V_{2} \cos \alpha-V_{1}\right) \\
&=30 \times 0.01 \times 1000 \times(0-30) \\
&=-9000 \mathrm{~N}=-9 \mathrm{kN} \text { con fluid) } \\
& \begin{aligned}
F & =-F_{x}
\end{aligned}=-9 \mathrm{kN} \text { on the plate. }
\end{aligned}
\end{aligned}
$$

13. A concrete sanitary sewer is 400 feet long and
a. 30 inches in diameter. It flows full without surcharge between a manhole (invert elevation surcharge between a manhole (invert elevation
101.00) and a lift station (invert elevation 101.00) and a lift station (invert elevation
100.00). If the Manning roughness coefficient is 100.00). If the Mannimg roughness coefficient is
0.013 and is assumed to be constant with depth of flow, the capacity of the sewer is most nearly
(A) 4.2 cfs
(B) 9.8 cfs
(C) 20.5 cfs
(D) 32.6 cfs
u

$$
\Leftrightarrow R=\frac{A}{P}=\frac{\frac{1}{4} \pi D^{2}}{\pi P}=\frac{D}{4}
$$

$$
Q=V A=\frac{1.49}{n} e^{\frac{7}{3}} \sigma_{30}^{\frac{1}{2}} A \text { (Page 67) }
$$

$$
=\frac{1.49}{0.013}\left(\frac{\frac{30}{12}}{4}\right)^{3 / 2}\left(\frac{1}{400}\right)^{1 / 2} \cdot \pi\left(\frac{1}{2} \frac{39}{12}\right)^{2}=20.56 \text { of }
$$

Question 14-15

A water supply system draws water from a river at an elevation of 800 feet and delivers it to a holding reservorr at olevation of 820 feet. The pipeline that delivers water to the reservoir is 1,000 feet long and is 10 -inch-diameter ast iron. Minor losses and entrance/exit losses are negligible. A single pump is used. Pump characteristics are shown in the figure below.

Q (GALLONSIMINUTE)

14 If friction losses are calculated using the Darcy equation with a friction factor $\mathrm{f}=0.02$, the head loss in the 1,000-foot force main for a flow rate of $1,500 \mathrm{gpm}$ is most nearly
(A) 4.15 feet
(B) 11.63 fect
(C) 13.96 feet
(D) 20.00 feet

$$
\begin{aligned}
& \text { Darcy equatron } h_{L}=f \frac{L}{1 D} \frac{v^{2}}{2 g} \text { (Page65) } \\
& v=\frac{\theta}{A}=\frac{1500 \mathrm{gpm}}{\pi\left(\frac{1}{2} \frac{10}{12}\right)^{2} \mathrm{ft}^{2}}=\frac{1500 \times \frac{0.1344 \frac{f t^{3}}{5}}{60}}{\pi\left(\frac{1}{2} \frac{10}{12}\right)^{2}+t^{2}}=6.142 \mathrm{fg} / \mathrm{s}
\end{aligned}
$$

$$
h_{L}=0.02 \times \frac{1000 f t}{\frac{16}{12} \mathrm{ft}} \frac{(6.12+2 \mathrm{f} / \mathrm{s})^{2}}{2 \times 32.2 \mathrm{f} / \mathrm{s}^{2}}=14 \mathrm{ft}
$$

$$
\text { (Page } 20 \text { for unit conversion) }
$$

1,000 4.94	$6.2=0.333 v^{2}$	47
1,500	14.0	45
2,000	24.9	(44)
2,500	39.0	34
3,000	52.6	28

If friction losses are calculated using the Darcy equation with a friction factor $\mathrm{f}=0.02$, the pumping rate of the pump is most nearly

Deliver warlar to the reservir:
(A) $1,500 \mathrm{gpm}$
\checkmark (B) $2,000 \mathrm{gpm}$
(C) $2,500 \mathrm{gpm}$
(D) $3,000 \mathrm{gpm}$

