Dynamics Problem Decomposition

Dynamics

Kinematics

Geometric descriptions of motion & constraints

Kinetics

Loading relationships which dictate CHANGES in motion
Dynamic Studies

Dynamics: (Kinematics & Kinetics)

Particles

Rigid Bodies

- \(M \) - mass
- \((x,y)\) - position in 2D
- 2 Degrees of Freedom (DOF) in the plane

- \(M \) & \(I \) - both mass & rotational inertia
- \((x,y,\theta)\) - position & orientation in 2D (3DOF)

Getting Started => Particle Kinematics

- Rectilinear Motion
 - Movement along a straight line in 1-2 or 3D
 - 1 Degree of Freedom (DOF)* - \(s(t) \)

- Curvilinear Motion
 - Movement of particle along an arbitrary path through space
Rectilinear Motion Overview (Calculus/Physics Review!):

- **Position** - $s(t)$
- **Speed** - $v(t)$

 (1) $v = \frac{ds}{dt} = s$
- **Acceleration** - $a(t)$

 (2) $a = \frac{dv}{dt} = v = \frac{d^2 s}{dt^2} = s$

Basic Calculus!
- Max’s & Min’s ?
- Undo Differentiation?

Typical Functions ??
- Polynomials
- Trigonometric
- Logarithms
- Exponentials

Rectilinear Motion Summary:

- **Position** - $s(t)$
- **Speed** - $v(t)$

 (1) $v = \frac{ds}{dt} = s$
- **Acceleration** - $a(t)$

 (2) $a = \frac{dv}{dt} = v = \frac{d^2 s}{dt^2} = s$

(2*) $v \ dv = a \ ds$

$a(t)$ => Solid Rocket Propulsion
$a(v)$ => aerodynamic drag

$a(s)$ => Gravitational fields, springs, conservative forces etc.
Rectilinear Kinematics: Accel. a function of velocity – a(v)

Given:
- A freighter moving at 8 knots when engines are stopped
- Deceleration $a = -kv^2$
- Speed reduces to 4 knots after ten minutes

Find:
(A) Speed of the ship as a function of time $v(t)$
(B) How far does the ship travel in the 10 minutes it takes to reduce the speed by 1/2?

Solution:
(A) With a, v & t parameters given/requested, use $a=\frac{dv}{dt}$ form

$$ t_f = t(v) = \int_{v_i}^{v_f} \frac{dv}{a(v)} - t_i = \int_{v_i}^{v_f} \frac{dv}{-kv^2} + 0 $$

$$ \Rightarrow t_f = \frac{1}{kv}|_{v_i}^{v_f} = \frac{1}{k} \left(\frac{1}{v_f} - \frac{1}{v_i} \right) \quad \Rightarrow v_f = v(t_f) = \frac{8}{8kt_f + 1} \text{ (knots)} $$
and the resulting expression for speed of the ship as a function of time \(v(t) \) is as follows
\[
v(t) = \frac{8}{6t + 1} \text{ (knots)}
\]

From here, there are two alternatives for resolving the second question

Rectilinear Kinematics: Accel. a function of velocity – \(a(v) \)

METHOD 1: Now, knowing the velocity as a function of time \(v(t) \), the boat’s position can be found by integration
\[
\int_0^t ds = \int_0^t \frac{8}{6t + 1} dt
\]
\[
s_f - 0 = \left. \frac{4}{3} \ln(6t + 1) \right|_0^t = \frac{4}{3} \left(\ln(6t + 1) - \ln(1) \right)
\]
and the resulting expression for position of the ship as a function of time \(s(t) \)
\[
s_f = s(t) = \frac{4}{3} \ln(6t + 1)
\]
can now be used to find the particular displacement/distance at \(t=1/6 \) hr!
\[
s(1/6) = \frac{4}{3} \ln(6(1/6) + 1) = \frac{4}{3} \ln(2) \text{ (nautical miles)}
\]
Rectilinear Kinematics: Accel. a function of velocity – a(v)

(B) METHOD 2: With \(a, v \) & \(s \) parameters given/requested, use \(ads = vdv \) form

\[
s_f = s(v) = \int_v^{v_0} \frac{v}{a(v)} \, dv + s_i \quad \Rightarrow \quad s(4) = \int_8^4 \frac{vdv}{-3/4v^2} + 0
\]

and the boat’s displacement (position?) can again be found by integration

\[
s(4) = \frac{-4}{3} \int_8^4 \frac{dv}{v} = -\frac{4}{3} \ln v \bigg|_8^4 = -\frac{4}{3} \left(\ln 4 - \ln 8 \right) = \frac{4}{3} \ln \frac{8}{4}
\]

and as was seen before

\[
s(t = 1/6) \Rightarrow s(v = 4) = \frac{4}{3} \ln(2) \quad \text{(nautical miles)}
\]

Q.E.D.

Curvilinear Kinematics Summary:

- Position
 \[
 \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}
 = r(t)\mathbf{e}_r + z\mathbf{e}_z
 \]

- Velocity: \(\mathbf{v} = \frac{d}{dt} \mathbf{r} \)
 \[
 \mathbf{v}(t) = \mathbf{r}(t) = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k}
 \]
 \[
 = v\mathbf{e}_r = s\mathbf{e}_r + r\theta\mathbf{e}_\theta + z\mathbf{e}_z
 \]

- Acceleration: \(\mathbf{a} = \frac{d}{dt} \mathbf{v} \)
 \[
 \mathbf{a}(t) = \mathbf{v}(t) = \mathbf{r}(t) = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k}
 = v\mathbf{e}_r + \frac{v^2}{\rho}\mathbf{e}_n
 = \left(\dot{r} - r\theta \right)\mathbf{e}_r + \left(\dot{\theta} + 2r\dot{\theta} \right)\mathbf{e}_\theta + z\mathbf{e}_z
 \]
Curvilinear Kinematics Summary:

- **Position**
 \[\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} = \mathbf{r}(t)\mathbf{e}_r + \mathbf{z}\mathbf{e}_z \]

- **Velocity:**
 \[\mathbf{v} = \frac{d\mathbf{r}}{dt} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k} = \mathbf{v}_e = \rho\mathbf{e}_e + r\theta\mathbf{e}_\theta + z\mathbf{e}_z \]

- **Acceleration:**
 \[\mathbf{a} = \frac{d\mathbf{v}}{dt} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j} + \ddot{z}\mathbf{k} = \mathbf{a}_e = \mathbf{v}_e^2\mathbf{e}_e + \frac{\rho^2}{\rho}\mathbf{e}_n = \left(\rho - r\theta\right)\mathbf{e}_e + \left(r\theta + 2r\theta\right)\mathbf{e}_\theta + z\mathbf{e}_z \]

2D Curvilinear Motion: Coordinates & Conversions

- **Cartesian <-> Polar <-> Path**
 \[\mathbf{r}(t) = x\mathbf{i} + y\mathbf{j} = r\mathbf{e}_r, \quad \mathbf{e}_r = \cos\theta\mathbf{i} + \sin\theta\mathbf{j}, \quad \mathbf{e}_\theta = k \times \mathbf{e}_r = \cos\theta\mathbf{j} - \sin\theta\mathbf{i}, \quad \mathbf{i} = \cos\theta\mathbf{e}_r - \sin\theta\mathbf{e}_\theta, \quad \mathbf{j} = k \times \mathbf{i} = \cos\theta\mathbf{e}_n + \sin\theta\mathbf{e}_r \]

 \[\mathbf{v}(t) = \dot{\mathbf{r}}(t) = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} = \mathbf{v}_e = s\mathbf{e}_s, \quad \mathbf{e}_s = \frac{\mathbf{v}}{v} = \frac{x}{v}\mathbf{i} + \frac{y}{v}\mathbf{j}, \quad \mathbf{e}_n = k \times \mathbf{e}_s = \frac{x}{v}\mathbf{j} - \frac{y}{v}\mathbf{i} \]

 \[\mathbf{i} = \cos\Psi\mathbf{e}_s - \sin\Psi\mathbf{e}_n, \quad \mathbf{j} = k \times \mathbf{i} = \cos\Psi\mathbf{e}_n + \sin\Psi\mathbf{e}_s \]
Curvilinear Motion: Cartesian Coordinates

- Projectile Motion
 - Scale w.r.t. earth such that gravity \mathbf{g} is ~constant

 \[|\mathbf{g}| = 32.2 \text{ ft/s}^2 = 9.81 \text{ m/s}^2 \]

 - Neglect any air resistance
 - Motion is PARABOLIC thus PLANAR!
 - Typically align
 - y-axis along gravity vector
 - x-axis horizontal in direction of motion

 \[\mathbf{a}(t) = 0 \hat{i} - g \hat{j} = [0, -g] \]

 - z component drops out!

Curvilinear Motion: Projectile Motion

- Integrate rectilinear relations
 - Two (2) scalar relations
 - One VECTOR relationship

\[
\begin{align*}
\mathbf{a}(t) &= 0 \hat{i} - g \hat{j} = [0, -g] = \mathbf{a}_c \\
\Rightarrow \int_{t_i}^{t_f} d\mathbf{v} &= \int_{t_i}^{t_f} \mathbf{a}_c \, dt \\
\Rightarrow \mathbf{v}_f &= \mathbf{v}_i + \int_{t_i}^{t_f} \mathbf{a}_c \, dt \\
\Rightarrow \mathbf{v}_f &= a_x (t_f - t_i) + \mathbf{v}_i \\
\Rightarrow \mathbf{r}_f &= \int_{t_i}^{t_f} \mathbf{r} = \int_{t_i}^{t_f} \mathbf{v}(t) \, dt \\
= \frac{a_x}{2} (t_f - t_i)^2 + \mathbf{v}_i (t_f - t_i) + \mathbf{r}_i \\
x_f &= v_{x_i} (t_f - t_i) + x_i \\
y_f &= \frac{-g}{2} (t_f - t_i)^2 + v_{y_i} (t_f - t_i) + y_i
\end{align*}
\]
Curvilinear Kinematics: Projectile Motion example

Given:
- Figure shown w/ ground $y = -kx^2$
- $t_0=0$, $(x_0,y_0)=0$, $v_0=v_0 \theta$ above horizon

Find: In terms of $v\theta$, θ & k
- (A) The location at impact (x_I,y_I)
- (B) Velocity & Speed @ impact, v_I, v_I
- (C) Elapsed time @ impact, t_I

Solution:
- 2D projectile motion
- Get expressions for $v_x(t), v_y(t)$ then $x(t), y(t)$
- Substitute into ground constraint expression
 - Solve for time of impact
- With t_I known, substitute & solve for (x_I,y_I)

\[
\begin{align*}
\Rightarrow & \quad \mathbf{v}_f(t) = \mathbf{a}_c(t_f-t_i) + \mathbf{v}_i \\
\Rightarrow & \quad \mathbf{r}_f = \frac{\mathbf{a}_c}{2} (t_f-t_i)^2 + \mathbf{v}_i (t_f-t_i) + \mathbf{r}_i
\end{align*}
\]

Curvilinear Kinematics: Projectile Motion

- IC's $\Rightarrow t_0=0$, $(x_0,y_0)=0$, $v_0=v_0 \theta$
 $\mathbf{a}(t) = 0 \mathbf{i} - g \mathbf{j} = [0, -g]

\Rightarrow (B) \quad \mathbf{v}_f = \mathbf{a}(t_f-0) + \mathbf{v}_0 = \begin{bmatrix} v_{x_f}, v_{y_f} \end{bmatrix}

\begin{align*}
v_{x_f} &= v_0 \cos \theta \\
v_{y_f} &= -gt_f + v_0 \sin \theta
\end{align*}

- Speed
 $\begin{align*}
 s &= v = \sqrt{v_{x_f}^2 + v_{y_f}^2} \\
 &= \sqrt{(v_0 \cos \theta)^2 + (-gt_f + v_0 \sin \theta)^2} \\
 &= \sqrt{v_0^2 - 2gv_0 \sin \theta t_f + (gt_f)^2}
\end{align*}$
Curvilinear Kinematics: Projectile Motion

\[\Rightarrow (B) \quad \mathbf{v}_t = \mathbf{a}(t_f - t_i) + \mathbf{v}_i = \begin{bmatrix} v_{x_1} \\ v_{y_1} \end{bmatrix} \]

\[\Rightarrow (A) \quad \mathbf{r}_t = \frac{\mathbf{a}}{2} (t_f - t_i)^2 + \mathbf{v}_0 (t_f - t_i) + \mathbf{r}_i \]

\[
\begin{align*}
 x_t &= v_0 \cos \theta \ t_t \\
 y_t &= \frac{-g}{2} t_t^2 + v_0 \sin \theta \ t_t \\
 y &= -k x^2 \\
\end{align*}
\]

\[\Rightarrow (C) \quad t_t = \frac{2v_0 \sin \theta}{g - 2k (v_0 \cos \theta)^2}, \quad t_f = 0 \]

Substitute value for \(t_f \) into position, velocity & speed relations for solution

Curvilinear Motion: Projectile Motion

– Other typical P.M. queries
 - Max Height
 - Max Range
 - Time @ some place along trajectory
 - Later w/ Path & Polar Coord
 - Velocity (speed,direction/tangent)
 - Curvature, rate of speed change ….

\[\mathbf{a}(t) = 0 \mathbf{i} - g \mathbf{j} = [0, -g] \]

\[\Rightarrow \mathbf{v}_f = \mathbf{a}(t_f - t_i) + \mathbf{v}_i \quad \Rightarrow \mathbf{r}_f = \frac{\mathbf{a}}{2} (t_f - t_i)^2 + \mathbf{v}_i (t_f - t_i) + \mathbf{r}_i \]

– Reconsider problems w/ different axes placement
Given: launch at 3600 m altitude \(v_o = 180 \) m/s angle 30°

\[
\begin{align*}
\dot{x} &= 0 \\
\ddot{x} &= 180 (\cos 30) = 156 \\
x &= 156 \ t \\
\text{for } h \text{ set } \dot{y} &= 0 \quad t &= 9.17 \quad h = y = 4013 \text{ m} \\
\text{for } t \text{ set } y &= 0 \quad t &= 31.18
\end{align*}
\]

Path Coord. Example ref: Meriam\&Kraige 2-8

Given:
- A rocket at high altitude with
- \(a_o = 6i - 9j \) (m/s²)
- \(v_o = 20 \) (km/hr) @ 15° below horizontal

Find: At instant given

(A) The **normal & tangential** accelerations
(B) Rate at which *speed* is increasing
(C) **Radius of curvature** of the path
(D) Angular **rotation rate** of the radial from CG to center of curvature

Solution:
- “High altitude” means negligible air resistance
- Interested only at this instant (NO Integration required)
- \(v \) given is TANGENT TO THE PATH
 - Use this to relate path to cartesian coordinates
Path Coord. Example ref: Meriam&Kraige 2-8

Solution (cont’d):

\[\mathbf{e}_e = \frac{\mathbf{v}}{v} = \frac{\mathbf{v}}{v} = \cos 15^\circ \mathbf{i} - \sin 15^\circ \mathbf{j} \]

\[\mathbf{e}_a = \pm (\mathbf{k} \times \mathbf{e}_e) \quad (2D \text{ shortcut!}) \]

\[= -\cos 15^\circ \mathbf{j} - \sin 15^\circ \mathbf{i} \]

(A) \(\mathbf{a}_n \) & \(\mathbf{a}_i = \)?

\[|\mathbf{a}_i| = \mathbf{a} \cdot \mathbf{e}_e = (6 \mathbf{i} - 9 \mathbf{j}) \cdot (\cos 15^\circ \mathbf{i} - \sin 15^\circ \mathbf{j}) = 8.12 \text{ (m/s}^2) = \mathbf{a}_i \]

\[|\mathbf{a}_n| = \mathbf{a} \cdot \mathbf{e}_n = (6 \mathbf{i} - 9 \mathbf{j}) \cdot (-\cos 15^\circ \mathbf{j} - \sin 15^\circ \mathbf{i}) = 7.14 \text{ (m/s}^2) = \mathbf{a}_n \]

(B) \(\mathbf{v} = ?? \quad \mathbf{v} = |\mathbf{v}| = 8.12 \text{ (m/s}^2) \)

(C) \(\rho = \frac{\mathbf{v}^2}{\mathbf{a}_n} \quad \Rightarrow \quad \rho = \frac{\mathbf{v}^2}{\mathbf{a}_n} = \frac{20 \text{ km/hr}^2}{7.14 \text{ (m/s}^2)} \left(\frac{1 \text{ hr}}{3600 \text{ s}} \cdot \frac{10^3 \text{ m}}{1 \text{ km}} \right)^2 = 4.32 \times 10^6 \text{m} \)

Path Coord. Example ref: Meriam&Kraige 2-8

Solution (cont’d):

(D) \(\dot{\theta} = ?? \)

- Look either at \(\mathbf{a}_n \) or velocity

\[a_n = \rho \dot{\theta}^2 \]

\[\Rightarrow \dot{\theta} = \sqrt{\frac{a_n}{\rho}} = \sqrt{\frac{7.14 \text{ (m/s}^2)}{4.32 \times 10^6 \text{(m)}}} = 12.9 \times 10^{-4} \text{ rad/s} \]

\[\mathbf{v} = \rho \dot{\theta} \]

\[\Rightarrow \dot{\theta} = \frac{\mathbf{v}}{\rho} = \frac{20 \text{ km/hr}}{4.32 \times 10^6 \text{(m)}} \left(\frac{1 \text{ hr}}{3600 \text{ s}} \cdot \frac{10^3 \text{ m}}{1 \text{ km}} \right) = 12.9 \times 10^{-4} \text{rad/s} \]
Relative Motion

\[\mathbf{r}_B = \mathbf{r}_A + \mathbf{r}_{B/A} \]
\[\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} \]
\[\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A} \]

Special Case: Rigid Bodies

When A & B are two points on the same rigid body then:

\[\mathbf{v}_B = \mathbf{v}_A + \omega_{AB} \mathbf{k} \times \mathbf{AB} \mathbf{u}_{B/A} \] (2D)

- i.e. the relative motion is circular
- \(\mathbf{v}_{B/A} \) is perpendicular (\(\perp \)) to \(\mathbf{r}_{B/A} \) &
- \(|\mathbf{v}_{B/A}| = |\omega_{AB} \mathbf{AB}| \)

Relative Motion: ref~DWY FE Review

Given:
- A river flows south at 5 m/s
- A boat can travel at 10 m/s relative to the water.

Find:
- In what direction should the boat head from A, in order to reach point B, directly across the river?

Solution:
- Set up Cartesian Axes @A
- Write Relative Velocity expression
 \[\mathbf{v}_B = \mathbf{v}_R + \mathbf{v}_{B/R} \]
- Draw Velocity Polygon diagram
 - \(\mathbf{v}_R \) magnitude & direction known
 - \(\mathbf{v}_R \) direction known, not magnitude
 - \(\mathbf{v}_{B/R} \) magnitude known, not direction

\[\mathbf{v}_R = 5 \text{ m/s} \]
\[\mathbf{v}_B = 10 \text{ m/s} @\theta ? \]
Relative Motion: ref–Dwy/WNW FE Review

Solution (cont’d):

\[\mathbf{v}_B = \mathbf{v}_R + \mathbf{v}_{B/R} \]
\[\mathbf{v}_B \hat{i} = \mathbf{v}_R \hat{i} + \mathbf{v}_{B/R} (\cos \theta \hat{i} + \sin \theta \hat{j}) \]
\[\mathbf{v}_B \hat{i} = -5 \hat{i} + 10 (\cos \theta \hat{i} + \sin \theta \hat{j}) \text{ (m/s)} \]

- Equating components:
 \[\hat{i} \Rightarrow \mathbf{v}_B = 10 \cos \theta \text{ (m/s)} \]
 \[\hat{j} \Rightarrow 0 = -5 + 10 \sin \theta \text{ (m/s)} \]

- 2 equations \(\leftrightarrow \) two unknowns
 \[\sin \theta = \frac{5}{10} = \frac{1}{2} \text{ (m/s)} \]
 \[\Rightarrow \theta = \sin^{-1}(\frac{1}{2}) = 30^\circ \]

- Lagniappe
 \[\mathbf{v}_B = 10 \cos 30^\circ \text{ (m/s)} \]

Relative Motion: ref–Dwy/WNW FE Review

Alternate Solution (cont’d):

- With velocity polygon drawn, use the Law of Sines

\[\frac{\sin \theta}{|\mathbf{v}_R|} = \frac{\sin 90^\circ}{|\mathbf{v}_{B/R}|} \]
\[\theta = \sin^{-1}\left(\frac{|\mathbf{v}_R|}{|\mathbf{v}_{B/R}|}\frac{\sin 90^\circ}{5}\right) \]
\[= \sin^{-1}\left(\frac{5}{10}\right) = 30^\circ \]
Relative Motion: ref—Meriam & Kraige 2/13

Given:
- Two cars \(A \) & \(B \) at the instant shown
 \[v_A = 72 \text{ km/hr} \]
 \[a_A = 1.2 \text{ m/s}^2 \]
 \[v_B = 54 \text{ km/hr}, \text{ constant speed} \]

Find:
(A) \(v_{B/A} = ? \)
(B) \(a_{B/A} = ? \)

Solution:
- Convert to consistent units
 \[(\text{km/hr})^* \frac{1}{3.6} = \text{(m/s)} \Rightarrow \]
 \[v_A = 72(\text{km/hr}) = 20(\text{m/s}) \]
 \[v_B = 54(\text{km/hr}) = 15(\text{m/s}) \]
- Motion RELATIVE TO \(A \) of interest
- Two coordinate axes are used
 - Simplifies \(\mathbf{v} \) & \(\mathbf{a} \) definitions
 - Illustrates "coordinate conversion" for expressing answers "in terms of" a unified set.

Relative Motion: ref—Meriam & Kraige 2/13

(A) Relative Velocity
\[
\mathbf{v}_{B/A} = \mathbf{v}_B - \mathbf{v}_A
= 15\mathbf{e}_t - 20 \mathbf{i} \text{ (m/s)}
= 15(\sin 30^\circ \mathbf{j} + \cos 30^\circ \mathbf{i}) - 20 \mathbf{i} \text{ (m/s)}
\]
\[
\mathbf{v}_{B/A} = -12.5\mathbf{j} + 13.0\mathbf{j} \text{ (m/s)} = 18 \text{ (m/s)} \angle -46^\circ
\]
- Velocity Polygon Approach (Graphical)
\[
\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A}
\Rightarrow \mathbf{v}_{B/A} = \mathbf{v}_B - \mathbf{v}_A
\]
\[
\mathbf{v}_{B/A} = 18 \text{ m/s} \]
\[
\mathbf{v}_B = 15 \text{ m/s} \]

15
Relative Motion: ref—Meriam & Kraige 2/13

(B) Relative Acceleration
\[a_A = 1.2 \mathbf{i} \text{ (m/ s}^2) \]
\[a_B = v \mathbf{e}_v + \frac{v^2}{\rho} \mathbf{e}_n \text{ (m/ s}^2) = \frac{(15 \text{ m/ s})^2}{150 \text{ m}} \mathbf{e}_n \]
\[a_B = 1.5 \mathbf{e}_n \text{ (m/ s}^2) \]
\[a_{B/A} = a_B - a_A \]
\[= 1.5 \mathbf{e}_n - 1.2 \mathbf{i} \text{ (m/ s}^2) \]
\[= 1.5(\cos 30^\circ \mathbf{i} - \sin 30^\circ \mathbf{j}) - 1.2 \mathbf{i} \text{ (m/ s}^2) \]
\[a_{B/A} = 0.1 \mathbf{j} - 0.75 \mathbf{j} \text{ (m/ s}^2) = 0.76(\text{m/ s}^2) @ -82^\circ \]

- Acceleration Polygon (Graphical)
\[a_B = a_A + a_{B/A} \]
\[\Rightarrow a_{B/A} = a_B - a_A \]

Given: A balloon at an altitude of 60 m is rising at steady rate of 4.5 m/s. A car passes below at constant speed of 72 kph.

Find: Relative rate of separation 1 second later:

\[a_c = 0 \quad \mathbf{a}_b = 0 \text{ (m/ s}^2) \]
\[\mathbf{v}_c = 20 \mathbf{i} \quad \mathbf{v}_b = 4.5 \mathbf{j} \text{ (m/s) \]
\[\mathbf{r}_c = 20t \mathbf{i} \quad \mathbf{r}_b = (60 + 4.5t) \mathbf{j} \text{ (m) \]
\[r_{B/C} = \begin{vmatrix} \mathbf{r}_b - \mathbf{r}_c \end{vmatrix} = \sqrt{\mathbf{r}_b - \mathbf{r}_c \cdot \mathbf{r}_b - \mathbf{r}_c} \]
\[r_{B/C}^2 = (20t)^2 + (60 + 4.5t)^2 \]
\[2r_{B/C} r_{B/C} = 2(20t)(20) + 2(60 + 4.5t)4.5 \]
Divide through by 2 \(r_{B/C} \) & set \(t = 1 \)
\[r_{B/C} = 690.25 / 67.52 = 10.22(\text{m/ s}) \]

Alternative Method (Vectors!):
\[r_{B/C} = \mathbf{v}_b - \mathbf{v}_c = \mathbf{v}_b - \mathbf{v}_c \cdot \mathbf{r}_b - \mathbf{r}_c = -20.45 \cdot 67.5 \]
\[= 690.3 / 67.5 = 10.2 \text{ (m/ s)} \]
Given: The ferris wheel rotates at $\dot{\theta} = 2 \text{ r/s}$, $\ddot{\theta} = -1 \text{ r/s}^2$ and the boy (B) walks to the right at a constant speed of 2 m/s.

Find: The velocity and acceleration of girl (G) on the ferris wheel relative to boy B

$\vec{v}_B = \frac{2}{\mathbf{i}}$ (m/s)
$\vec{a}_B = 0$

$\vec{v}_G = 4 \text{ m/s} \cdot \vec{e}_\theta = 8 \vec{e}_\theta$ (m/s)

$\vec{a}_G = -4 \text{ m/s}^2 \cdot \vec{e}_\theta + 4 \text{ m/s}^2 \cdot \vec{e}_r$

Two points on a rigid body:

$\vec{v}_B = \vec{v}_A + \vec{v}_{BA}$

$\vec{v}_B \mathbf{i} = \vec{v}_A \mathbf{i} + \omega_{AB} \mathbf{k} \times \vec{AB} \mathbf{u}_{BA}$

$\vec{v}_B \mathbf{i} = \vec{v}_A \mathbf{i}$

$-\vec{AB} \omega_{AB}(\sin\theta \mathbf{i} + \cos\theta \mathbf{j})$

Equating \mathbf{i} & \mathbf{j} components:

$\mathbf{i} \to \vec{v}_A \cdot -\vec{AB} \omega_{AB} \sin\theta = 0$

$\mathbf{j} \to \vec{v}_B = \vec{AB} \omega_{AB} \cos\theta$

$\frac{\vec{v}_A}{\vec{v}_B} = \frac{\vec{AB} \omega_{AB} \sin\theta}{\vec{AB} \omega_{AB} \cos\theta}$
Using Instant Centers (IC):

\[V_A = AC \omega_{AB} \mathbf{i} \]
\[V_B = -BC \omega_{AB} \mathbf{j} \]

\[AC = AB \sin \theta \]
\[BC = AB \cos \theta \]

\[\frac{v_A}{v_B} = \frac{AB \omega_{AB} \sin \theta}{AB \omega_{AB} \cos \theta} \]

Slider Crank Velocities Using Graphical & Instant Centers (IC):

\[V_B = OB \omega_o = CB \omega_{AB} \]
\[V_A = CA \omega_{AB} \]

Be sure to account for direction!

\[V_A = (OB / CB) CA \omega_o \]
Given: \(\omega_c = 2 \text{ r/s} \)
\(\alpha_c = 6 \text{ r/s}^2 \)

Find: \(v_D, a_D \)

\(r_A = 6'' \)
\(r_B = 12'' \)
\(r_C = 8'' \)
\(\omega_C = 2 \text{ r/s} \)
\(\alpha_c = 6 \text{ r/s}^2 \)

\(V_{E1} = r_C \omega_C = 8 \times 2 = 16 \text{ in/s} \)
\(V_{E2} = 16 \times = r_B \omega_B = 12 \omega_B \)
so:\(\omega_B = 4/3 \text{ r/s} = \omega_A \)
\(V_D = V_F = \omega_A r_A = 4/3 \times 6 = 8 \text{ [in/s]} \)

\(a_{E1} = \alpha_c r_C \times = \omega_c^2 r_C \rightarrow \)
\(= 6 \times 8 + 4 \times 8 \rightarrow = 48 \times 32 \rightarrow [\text{in/s}^2] \)

\(a_{E2} = a_{E1} = 48 \times = \alpha_B r_B = \alpha_B (12) \alpha_B = 4 \text{ [in/s}^2] \)
\(a_{F} = \alpha_A r_A = 4 \times 6 = 24 \times = a_D \text{ [in/s}^2] \)
Given: \(r_o = 3' \quad r_i = 2' \quad v_o = 10 \text{ f/s} \quad \text{no slip} \)

Find: \(v_B \)

\(v_o = 10 \text{ ft/s} \quad \rightarrow \)

\(v_c = v_o + \omega r = 10 - 2 \omega = 0 \quad \rightarrow \quad v_A = ? \)

\(\omega = 5 \quad \text{or} -5 \quad \text{k} \)

\(v_B = v_o + \omega \times r_{B/o} = 10 \quad \text{i} + -5 \text{k} \times -3 \text{j} = -5 \text{i} \quad \text{[ft/s]} \quad \rightarrow \)

or \(v_B = v_c + \omega \times r_{B/c} = 0 + 5 \text{k} \times -1 \text{j} = -5 \text{i} \quad \text{[ft/s]} \quad \rightarrow \)

Kinetics Summary

- Three general solution approaches for establishing the governing equations of motion (EOM) => Which one to use?

 i) Newton’s Laws

 \[
 \sum \vec{F} = m \vec{a}_{CG} \quad \sum M_p = I_{CG} \alpha + r_{eff} m a_{CG}
 \]

 \[
 U_{A-B} = \int_{s_A}^{s_B} ma \, ds = \int_{v_A}^{v_B} m \nu \nu \, dv = \frac{1}{2} m \left(v_B^2 - v_A^2 \right) = \Delta T_{A-B}
 \]

 \[
 U_{NC} = \Delta T + \Delta V_g + \Delta V_e = \Delta E_{TOT}
 \]

 iii) Impulse - Momentum & Conservation of Momentum

 \[
 \mathbf{I} = \int \mathbf{F}_R \, dt = \int d\mathbf{L} = \Delta \mathbf{L}
 \]

 - Typical forces

 - Springs \(\mathbf{F} = k \left(s - s_0 \right) \)

 - Friction \(\mathbf{F}_f = \mu_{s/k} \mathbf{N} \)

 - Gravitation \(\mathbf{F} = m \mathbf{g} \)
Particle Kinetics: Free Body Diagrams

- **Free Body Diagrams:**
 - Isolate the particle/system of interest (i.e. boundaries)
 - For noting action-reaction between particles/bodies it is important to identify the **common normal-tangent @ the point of contact** (often one or the other is easily identified)

- Include ALL forces (& later => moments)
 - Field forces (gravity, electro-magnetic fields etc)
 - Viscous forces (aerodynamic drag, fluid flows, etc)
 - Contact forces (touching elements) -- Most common

- For motion over an interval --- draw in a general position!

Kinetics:

\[\Sigma F = ma \]

\[\Sigma M = I \alpha \]

FBD

\[\sum M_p = I \alpha + r_{eff} ma \]
Given: the 20# force is applied to the sliding door which weighs 100 #
Find: the reactions at the frictionless roller supports

\[
\sum F_{\rightarrow} = 20 = \frac{(100)}{g} a \quad a = \frac{g}{5}
\]

\[
\sum M_{A} = 10B - 5(100) + (20) = 0 \quad B = 54 #
\]

\[
\sum M_{A} = 10B - 5(100) + (20) = 3 \left(\frac{100}{g}\right) (g/5)
\]

\[
\sum F_{\rightarrow} = A + B - 100 = 0 \quad A = 46 #
\]

Find: the reactions at the frictionless roller supports
Particle Kinetics: Path Coord Example

Given:
• The slider \(m = 2 \text{ kg} \) fits loosely in the smooth slot of the disk which lies in a horizontal plane and rotates about a vertical axis through point \(O \).
• The slider is free to move only slightly along the slot in either direction before one (but not both) of the two wires \#1 or \#2 becomes taut.
• The disk starts from rest at time \(t = 0 \) and has a constant clockwise angular acceleration of \(\alpha = 0.5 \text{ r/s}^2 \).

Find:
(A) Determine the TENSION \((T_2) \) in wire \#2 at \(t = 1 \text{ second} \).
(B) Determine the REACTION FORCE \((N) \) between the slot and the block, again at \(t = 1 \text{ second} \).
(C) Determine the TIME \((t) \) at which the tension in wire \#2 goes slack and wire \#1 becomes taut.

Solution:
• Asks for FORCES \((T, N) \) so we must first establish kinematics (accelerations!)
• “Move only slightly” means it is effectively fixed relative to the slot/disk, thus
• The slider travels a circle about \(O \) & path \((e_r, e_\theta) \) axes
 or polar \((e_r, e_\theta) \) axes are convenient
Solution (continued):

- Newton’s Law can be applied along ANY two independent directions to resolve unknown reactions
 - Sum force components along \((n-t, r-\theta)\)
 \[
 T_2 \cos 45 + N \sin 45 = m \alpha r \\
 T_2 \sin 45 - N \cos 45 = -m \omega^2 r
 \]
 - OR to simplify algebra of unknowns, choose the directions along the unknown reactions and sum both forces and acceleration components
 \[
 T = m \left(\alpha r \cos 45 - \omega^2 r \sin 45 \right) = \frac{mr \sqrt{2}}{2} (\alpha - \omega^2) \\
 N = m \left(\alpha r \cos 45 + \omega^2 r \sin 45 \right) = \frac{mr \sqrt{2}}{2} (\alpha + \omega^2)
 \]
- ASIDE: This IS the geometric equivalent to simultaneously solving the first set of constraints to yield expressions for the unknowns
- Noting the similarity of the expressions \((\pm: + \text{ for } N, - \text{ for } T)\)
 \[
 N, T_2 = \frac{mr \sqrt{2}}{2} (\alpha \pm \omega^2)
 \]

Particle Kinetics: Path Coord Example

Solution (continued):

- Substituting the known expressions for \(\alpha \text{ and } \omega(t)\)
 \[
 N, T_2 = \frac{mr \sqrt{2}}{2} (\alpha \pm \omega^2)
 \]

(A) So for \(t=1\), the TENSION \(T_2\) is
 \[
 T_2 = \frac{\sqrt{2}}{20} \left(1 - 0.5(1)^2 \right) (N) = \frac{\sqrt{2}}{40} (N) = 0.035 (N)
 \]

(B) At \(t=1\), the NORMAL REACTION \(N\) is
 \[
 N = \frac{\sqrt{2}}{20} \left(1 + 0.5(1)^2 \right) (N) = \frac{3\sqrt{2}}{40} (N) = 0.106 (N)
 \]

(C) The time when TENSION \(T_2\) goes to zero is
 \[
 T_2 = \frac{\sqrt{2}}{20} \left(1 - 0.5t^2 \right) (N) = 0 \Rightarrow 1 - 0.5t^2 = 0 \Rightarrow t = \sqrt{2} \Rightarrow t = 1.414 \text{ (s)}
 \]
Particle Kinetics: Path Coord Example ref –Meriam & Kraige 3/74

Langiappe:
- The acceleration vector starts off completely in the lateral (i or f) direction here \((\omega=0)\). Since cables/wires/ropes cannot PUSH, only \(T_2\) can be engaged in balancing the \((r\ or \ n)\ component\) of the side wall reaction \(N\).
- The tangential acceleration component remains constant.
- As the disk speeds up \((\omega>0)\), the normal component increases.
- When the total acceleration vector aligns with the normal reaction force between the block & slot, the cord/wire tensions are both zero momentarily, and as \(T_2\) goes slack, \(T_1\) will become taut.

\[
\begin{align*}
\mathbf{a} & \bigg|_{t=0} = \mathbf{a}_f \text{ or } \mathbf{a}_g \\
\text{increasing } & \omega \\
T_1 & = T_2 = 0
\end{align*}
\]

Impulse / Momentum
\[
\int_{t_1}^{t_2} \mathbf{F} \, dt = \int_{t_1}^{t_2} m \mathbf{a} \, dt = \int_{t_1}^{t_2} m \mathbf{d} \mathbf{v} \\
= m \mathbf{v}_2 - m \mathbf{v}_1
\]

If mutual forces cancel, impulses cancel
(not true of work)

coef. Of restitution
\[
e = \frac{\text{rel. norm. sep. vel.}}{\text{rel. norm. app. vel.}}
\]

Angular Momentum:
\[
\int \mathbf{r} \times \mathbf{C} \, dt = \int \mathbf{I} \alpha \, dt \\
= \int \mathbf{I} \mathbf{d} \mathbf{\omega} \\
= \int \mathbf{I} \mathbf{\omega}_2 - \mathbf{I} \mathbf{\omega}_1
\]
Example: Conservation of Momentum

Given:
- An artillery gun (m_G) fires a shell (m_p) with a speed v_p

Find:
- (A) The recoil speed (v_R) of the gun

Solution:
- FBD of system components, just as shell leaves the gun
- Rectilinear motion (i.e. only horizontal motion of interest here)
- Propellant firing is internal to the system
 - System momentum is conserved in the horizontal direction
 \[\Delta L_{\text{sys}} = 0 \]
 \[\Delta L_{\text{s-system}} = m_G (v_G - 0) + m_p (v_p - 0) = 0 \]

\[v_R = -v_G = \frac{m_p}{m_G} v_p \]

Example: Conservation of Momentum

Given:
- More often, a “muzzle velocity” ($v_{P/G}$) or speed of the shell relative to the gun barrel is specified

Find:
- (A) The recoil speed (v_R) of the gun

Solution:
- FBD (same), Rectilinear motion & Propellant firing is internal

\[\Delta L_{\text{sys}} = 0 \]
\[\Delta L_{\text{s-system}} = m_G (v_G - 0) + m_p (v_p - 0) = 0 \]

\[v_p = v_G + v_{P/G} \]

\[m_G v_G + m_p (v_G + v_{P/G}) = 0 \]

\[v_R = -v_G = \left(\frac{m_p}{m_G + m_p} \right) v_{P/G} \]
Example: Conservation of Momentum

Given:
- Numerous examples with similar circumstances, rephrasing the wording
 - Kid(s) on a boat in still water, one jumps off
 - Car lands on a barge & skids to rest relative to barge
 - Rail cars collide & stay attached

Find:
- (A) The resulting speeds of each element
- (B) A time it takes to “skid to rest”

Solution:
- Similar conservation of momentum relations

\[\Delta L_{sys} = 0 \]

Particle Kinetics: Impulse-Momentum

- **Impact Problems:**
 - Reformulation of one type of Impulse-Momentum
 - Impulsive Forces characterized by
 - LARGE MAGNITUDE
 - SHORT TIME DURATION
 - Ex: explosions, ball-bat, club-ball
 - Neglect other conventional forces of lesser effect for the short time interval
 - Springs
 - Gravity
 - Many Reaction forces (BUT NOT ALL!)
 - Good opportunity to look at the SYSTEM of particles in simplifying the problem (reactions are internal!)
Particle Kinetics: Impulse-Momentum/Impact

- Impact
 - Locate Common Normal/Tangent
 - Line of contact/impact - the NORMAL!
 - Forces of interaction
 - Equal, Opposite, Co-linear
 - Very complex internal phenomena, captured by Coefficient of Restitution
 \[e = \left(\frac{V_{\text{relative Separation}}}{V_{\text{relative Approach}}} \right)_{\text{Normal}} \]
 (good derivation in B&J text --- READ IT!)

- Central & Oblique Impacts
 - Velocities are NOT co-linear with the line of impact (i.e. the common normal)

Particle Kinetics: Impulse-Momentum/Impact

- Solving Impact Problems!

 (1) Tangential Direction: individual particles have no net external impulsive forces in!
 \[m_A v_{At} = m_A v_{At}^* \quad \& \quad m_B v_{Bt} = m_B v_{Bt}^* \]

 (2) System of particles: No net impulsive forces normal direction!
 \[\Delta L_{\text{SYS}} = 0 \Rightarrow m_A v_{An} + m_B v_{Bn} = m_A v_{An}^* + m_B v_{Bn}^* \]

 (3) Coefficient of Restitution: Rel. Velocities along Common NORMAL!
 \[e = \left(\frac{v_{\text{Relative Separation}}}{v_{\text{Relative Approach}}} \right)_{\text{Normal}} = \frac{v_{Bn} - v_{An}^*}{v_{An} - v_{Bn}} \]
 (Perfectly Plastic) \(0 \leq e \leq 1 \) (Perfectly Elastic)
Particle Kinetics: Impulse-Momentum/Impact

- Solving constraint relations:

\[v_{At} = v_{At}^* \text{ & } v_{Bt} = v_{Bt}^* \]

(1) \[v_{Bn}^* = v_{Bn} + \frac{m_A}{m_B} (v_{An} - v_{An}^*) \]

(2) \[v_{Bn}^* = e(v_{An} - v_{Bn}) + v_{An}^* \]

- From which the unknown rebound (normal) component of velocities become:

\[v_{An}^* = \left(\frac{m_A - m_B e}{m_A + m_B} \right) v_{An} + \left(\frac{m_B}{m_A + m_B} \right) (1 + e)v_{Bn} \]

\[v_{Bn}^* = \left(\frac{m_A}{m_A + m_B} \right) (1 + e)v_{An} + \left(\frac{m_B - m_A e}{m_A + m_B} \right) v_{Bn} \]

Particle Kinetics: Impulse-Momentum/Impact

- What if \(m_A \gg m_B \)?

\[v_{At} = v_{At}^* \text{ & } v_{Bt} = v_{Bt}^* \]

(1) \[v_{Bn}^* = v_{Bn} + \frac{m_A}{m_B} (v_{An} - v_{An}^*) \]

(2) \[v_{Bn}^* = e(v_{An} - v_{Bn}) + v_{An}^* \]

- From which the unknown rebound (normal) component of velocities become:

\[v_{An}^* = -e v_{An} + (1 + e)v_{Bn} \]

\[v_{Bn}^* = v_{Bn} \]
Given: two balls of equal mass with the velocities shown collide, coefficient of rest = 0.8
Find: velocities after impact

\[x - \text{mom.: } u_1 + u_2 = \frac{5}{\sqrt{2}} - 8 \]

Rest: \[u_2 - u_1 = 0.8 \left[(\frac{5}{\sqrt{2}}) + 8 \right] \]

\[u_2 = 2.76 \quad u_1 = -7.23 \]

\[\text{Work / Energy:} \]

\[T_1 + V_1 + W_{NC} = T_2 + V_2 \]

where \[T = \frac{1}{2} m \nu_c^2 = \frac{1}{2} I_c \omega^2 = \frac{1}{2} I_c \omega^2 \]

\[V_{\text{grav}} = -mgh \]

\[V_{\text{spring}} = \frac{1}{2} k x^2 \quad \text{where } x = l - l_o = \text{stretch} \]
Work-Energy Example ref~Meriam & Kraige 3/11

Given:
• A crate of mass \(m \) slides down an incline
• \(m = 50 \text{ kg}, \theta = 15^\circ, \mu_k = 0.3 \)
• Reaches A with speed 4 m/s

Find:
(A) Speed of crate \(v_B \) as it reaches a point B
10 m down the incline from A

Solution:
• Rectilinear motion, align axes accordingly - i.e. || & \(\perp \) to incline
• FBD of crate in general position (working over a motion interval here)
• No movement \(\perp \) to incline so
\[\sum F_y = mg \cos \theta - N = 0 \quad \Rightarrow \quad N = mg \cos \theta \]

Work-Energy Example ref~Meriam & Kraige 3/11

Solution (cont’d):
• Work done is due to the resultant forces in direction of displacement (i.e. down incline) & includes Friction & component of Weight
\[U_{A-B} = (mg \sin \theta - N \mu_k)\Delta x_{AB} \]
\[= (mg \sin \theta - mg \cos \theta \mu_k)\Delta x_{AB} \]
• Principle of Work-Energy then says
\[U_{A-B} = \Delta T_{A-B} = T_B - T_A \]
\[\Rightarrow \quad T_B = U_{A-B} + T_A \]
\[\frac{1}{2}mv_B^2 = mg(\sin \theta - \cos \theta \mu_k)\Delta x_{AB} + \frac{1}{2}mv_A^2 \]
\[v_B = \sqrt{2g(\sin \theta - \cos \theta \mu_k)\Delta x_{AB} + v_A^2} \]
\[v_B = \sqrt{2 \times 9.81 \text{ (m/s)}^2 \times (\sin 15^\circ - \cos 15^\circ \times 0.3) \times 10 \text{ m} + (4 \text{ m/s})^2} \]
\[v_B = 3.15 \text{ m/s} \]
Work-Energy: Example ref ~Meriam & Kraige 3/13

Given:
- Block \((m = 50 \text{ kg})\) mounted on rollers
- Massless spring w/ \(k = 80 \text{ N/m}\)
- Released from rest at \(A\) where spring has initial stretch of 0.233 m
- Cord w/ constant tension \(P = 300 \text{ N}\) attaches to block & routed over frictionless/massless (ideal) pulley @ \(C\)

Find:
1. Speed of block \(v_B\) as it reaches a point \(B\) directly under the pulley.

Solution:
- Again, rectilinear motion, align axes accordingly
- FBD of block in general position (working over a motion interval here)
- Look at alternative - include the rope in as part of the SYSTEM - reduce FBD to an ACTIVE Force Diagram!

\[
\begin{align*}
U_{AB_s} &= \int_A^B F_s dx = \int_A^B -kx dx = \frac{1}{2} kx^2 \bigg|_A^B \\
&= -\frac{1}{2} k(x_B^2 - x_A^2) \\
&= -\frac{1}{2} (80 \text{ N/m})((1.2 + 0.233)^2 - 0.233^2)(m^2)
\end{align*}
\]

Work-Energy: Example ref ~Meriam & Kraige 3/13

Solution (cont’d):

ACTIVE Force Diagram!

- Eliminate Normal Forces \(\perp\) to displacement @ their point of contact \{THEY DO NO WORK\}:
 - Weight (\(mg\)) & Roller reactions (\(N\))
 - Pulley force on rope (\(R\))
- Active forces DO work on the system
 - Spring Force (\(F_s\)) => opposes motion

\[
F_s = -kx
\]

\[
U_{AB_s} = -\frac{1}{2} (80 \text{ N/m})((1.2 + 0.233)^2 - 0.233^2)(m^2) = -80 \text{ Joules}\]
Work-Energy: Example ref—Meriam & Kraige 3/13

Solution (cont’d):
- Calculate Work done on system
 - Cord Tension (P) \Rightarrow constant
 - Displacement of P
 $L_{cord} = s_p + l = constant$
 $\Delta s_p = -\Delta l = l_B - l_A$
 $= \sqrt{1.2^2 + 0.9^2} - 0.9 \approx 0.61m$
 $U_{AB} = P\Delta s = 300(n) \ast 0.61(m)$
 $= 180 Joules$
- Work-Energy
 $U_{TOT} = \Delta T = T_B - T_A$
 $-80 + 180(Joules) = \frac{1}{2}mv_B^2 - 0$
 $\Rightarrow v_B = \sqrt{\frac{100(Joules) \ast 2}{50 Kg}} = 2.0 m/s$

Conservation-Energy Example ref—Meriam & Kraige 3/17

Given:
- $m=3$ kg slider on circular track shown
- Starting from A with $v_A=0$
- $l_o=0.6$ m (unstretched), $k=350$ N/m
- $\mu=0$ (i.e. friction is negligible)

Find:
(A) Velocity of slider as it passes B

Solution:
- FBD of crate in general position (working over a motion interval here)
- Identify
 - Conservative Forces
 mg (Weight/Gravity) & F_s (Spring)
 - Non-working Constraint Forces
 N (Track reaction force)
Conservation-Energy Example

Solution:

- ALL Forces are either Conservative or Non-working constraints, therefore Cons. Of Energy applies!

\[\Delta E_{TOT} = \Delta T + \Delta V_g + \Delta V_c = 0 \]

\[\Delta T_{AB} = \frac{1}{2} m(v_B^2 - v_A^2) = \frac{1}{2} m(v_B^2 - 0) \]

\[\Delta V_{ABg} = mg(y_B - y_A) = mg(0 - R) \]

\[\Delta V_{ABc} = \frac{1}{2} k \left((l_B - l_0)^2 - (l_A - l_0)^2 \right) \]

- Pulling together all components & isolating \(v_B \)

\[v_B = \sqrt{2gR + \frac{k}{m} \left(R^2 - (\sqrt{2}R - R)^2 \right)} \]

- Incorporating numerical values of all terms

\[v_B = \sqrt{2 \times 9.81 \text{m/s}^2 \times 0.6 \text{m} + \frac{350 \text{N/m}}{3 \text{kg}}} \left(0.6 \text{m}^2 - (\sqrt{2} \times 0.6 \text{m} - 0.6 \text{m})^2 \right) = 6.82 \text{ m/s} \]

Work/Energy

\[T_1 + V_1 + W_{NC} = T_2 = V_2 \]

Given: \(k, m, \Theta \)

block released from rest with spring compressed \(\delta \)

Find: distance travelled to stop, \(d \)

\[T_1 = 0 \quad V_1 = \frac{1}{2} k \delta^2 \]

\[W_{NC} = -Fd \]

where \(N = mg \cos \Theta, F = \mu_k N \) while sliding

\[V_2 = \frac{1}{2} k (d - \delta)^2 - mgd \sin \Theta \]
Given: \(k, m, R, \Theta, I \)
released from rest, no slip, no initial deflection in spring

Find: speed after 1/2 revolution

\(T_1 = 0 \)
\(V_1 = 0 \)
\(W_{NC} = 0 \)

\[
T_2 = \frac{1}{2} m v_2^2 + \frac{1}{2} I \omega_2^2,
\]
\[
V_2 = \frac{1}{2} k (\pi R)^2 - mg \pi R \sin \Theta
\]

need also \(v_2 = R \omega_2 \)
(no slip condition)

\[
0 = \frac{1}{2} m v_2^2 + \frac{1}{2} I \left(\frac{v_2}{R}\right)^2 + \frac{1}{2} k (\pi R)^2 - mg \pi R \sin \Theta
\]

Kinetics Summary

- Three general solution approaches for establishing the governing equations of motion (EOM) => Which one to use?

 i) Newton’s Laws

\[
\sum F = m \mathbf{a}_{CG} \quad \sum M_p = I_{CG} \alpha + r_{eff} ma_{CG}
\]

\[
U_{A-B} = \int_{s_A}^{s_B} ma_{s} \, ds = \int_{v_A}^{v_B} mvdv = \frac{1}{2} m \left(v_B^2 - v_A^2\right) = \Delta T_{A-B}
\]

\[
U_{NC} = \Delta T + \Delta V_g + \Delta V_e = \Delta E_{TOT}
\]

iii) Impulse - Momentum & Conservation of Momentum

- Typical forces

\[
I = \int F_{gt} \, dt = \int dL = \Delta L
\]

- Springs \(F = k (s - s_0) \)
- Friction \(F_f = \mu s \cdot \mathbf{N} \)
- Gravitation \(\mathbf{F} = mg \)
Given: Box placed on conveyor with zero initial velocity.

Find: Time during which slip occurs

\[V_{B} = 10 \text{ ft/s} \]
\[\mu = 0.333 \]

\[\Sigma F^\uparrow = N - mg = 0 \]
\[\Sigma F^{\rightarrow} = \mu N = ma \]
\[\mu mg = ma \quad a = \mu g \]

\[v = \mu gt \]

Once slip stops \(v = v_B \)

so \(t = \frac{v_B}{\mu g} \)
Given: ball of radius \(r \) released from rest on incline, no slip, \(\Theta = 30^\circ \)

Find: acceleration

\[
\Sigma F = N - mg \cos 30 = 0
\]

\[
\Sigma F_x = mg \sin 30 - F = ma
\]

\[
\Sigma M_G = rF = 2/5 mr^2 \alpha
\]

if no slip, \(a = r \alpha \) so \(mg \sin 30 - 2/5 mr \alpha = mr \alpha \)

so \(\alpha = (5/7)(g/r)(1/2) \);

\(a = (5g/7)(1/2) = 5g/14 \)

\[
v = a \ t = \frac{5gt}{14}
\]

also: \(N = \frac{\sqrt{3}}{2} \ mg \rightarrow F_{\text{max}} = \mu_s N = \frac{\sqrt{3}}{2} \mu \ mg \)

\[
F = \frac{2}{5} mr \alpha = \frac{mg}{7}
\]

\(F \leq F_{\text{max}} \) requires \(\frac{1}{7} \leq \frac{\sqrt{3} \mu}{2} \)

or \(\mu \geq \frac{2}{7\sqrt{3}} \)
Given: \(v \), \(r \)

Find: \(\Phi \); tension

\[
\begin{align*}
ma &= m r \omega^2 \\
ma &= m \frac{v^2}{r}
\end{align*}
\]

\[
\Sigma F \uparrow = T \cos \Phi - mg = 0 \\
\Sigma F \rightarrow = T \sin \Phi = m \frac{v^2}{r}
\]

or \[
\Sigma F \rightarrow = mg \sin \Phi = ma \cos \Phi
\]

so \(\tan \Phi = \frac{a}{g} = \frac{v^2}{gr} \)

Given: \(m_1 \) released from rest, strikes \(m_2 \)

Find: max spring compression

State ① as shown
State ②
Vibrations

\[\sum F = -kx - cx = mx \]

Or

\[m\ddot{x} + c\dot{x} + kx = 0 \]
\[\ddot{x} + \frac{c}{m}\dot{x} + \frac{k}{m}x = 0 \]

general

\[\ddot{x} + 2\zeta \omega \dot{x} + \omega^2 x = 0 \]

where \(w \) = natural freq.
\(\zeta = \) damping factor

\(\zeta < 1 \) underdamped
\(\zeta > 1 \) overdamped
\(\zeta = 1 \) critically damped
Particle Kinetics: Cartesian Example ref – Meriam & Kraige 3/5

Given:

- A collar of mass m slides vertically on a shaft with kinetic coefficient of friction, μ_k.
- Applied force F is constant but its direction varies as $\theta = kt$, k = constant
- Collar starts from rest @ $\theta = 0^\circ$

Find:

(A) Magnitude of F which results in collar coming to rest at $\theta = 90^\circ$.

Solution:

- Rectilinear motion! Constrained vertically so align axes accordingly
- FBD of collar in general position

Newton’s Laws

\[
\sum F_x = F \sin \theta - N = 0 \quad \Rightarrow N = F \sin \theta
\]
\[
\sum F_y = -F \cos \theta + mg + N \mu_k = ma
\]

\[
& - \frac{F (\sin \theta \mu_k - \cos \theta)}{m} + g = a_y
\]

Particle Kinetics: Cartesian Example ref – Meriam & Kraige 3/5

Solution (Cont’d):

- Don’t know F but DO know it’s constant!
- Angle-time relation ($\theta = kt$) cleans up
 - Kinematic relationship variables &
 - Proper (Pos, Vel) BC’s for integration
 - Starts: $v_{yi} = 0, \theta = 0 \Rightarrow t = 0$
 - Ends: $v_{yf} = 0, \theta = \pi/2 \Rightarrow t = \pi/(2k)$
 - Start w/ general upper limits

\[
\int_0^{v_y} dv_y = \int_0^{t} \left(\frac{F}{m} (\sin(kt) \mu_k - \cos(kt)) + g \right) dt
\]
\[
v_{yf} = \left. \left[\frac{F}{mk} (-\cos(kt) \mu_k - \sin(kt)) + gt \right] \right|_0^t
\]
\[
v_{yf} = \frac{F}{mk} \left[(1 - \cos(kt) \mu_k - \sin(kt)) + gt \right]
\]
Particle Kinetics: Cartesian Example

Solution (continued):

- Now using the final BC for $t=\pi/2k$, $v_y=0$

$$v_y = \frac{F}{mk} \{ [1 - \cos(kt)]\mu_k - \sin(kt) \} + gt$$

$$0 = \frac{F}{mk} \{ [1 - \cos(\pi/2)]\mu_k - \sin(\pi/2) \} + \frac{g\pi}{2k}$$

$$0 = \frac{F}{mk} \{ \mu_k - 1 \} + \frac{g\pi}{2k}$$

$$\therefore F = \frac{\pi mg}{2(1 - \mu_k)}$$

Langiappe:

- What are:
 - The collar’s vertical displacement as a function of time?
 - The collar’s total distance traveled?

Particle Kinetics: Cartesian Example

Langiappe (continued):

- Returning to the expression for $v_y=f(t)$

$$v_y = \frac{dy}{dt} = \frac{F}{mk} \{ [1 - \cos(kt)]\mu_k - \sin(kt) \} + gt$$

$$\int_0^t dy = \int_0^t \left\{ \frac{F}{mk} \{ [1 - \cos(kt)]\mu_k - \sin(kt) \} + gt \right\} dt$$

$$y_f = \left[\frac{F}{mk} \{ [t - \sin(kt)]\mu_k + \cos(kt) \} + \frac{1}{2} gt^2 \right]_0^t$$

$$y_f = \frac{F}{mk} \{ [t - \sin(\pi/2)]\mu_k + \cos(\pi/2) \} + \frac{1}{2} gt^2$$

$$y_f = \frac{F}{mk} \{ [\frac{\pi}{2k} - \sin(\pi/2)]\mu_k + \cos(\pi/2) \} - \frac{1}{2} g \left(\frac{\pi}{2} \right)^2$$

$$y_f = \frac{F}{mk} \{ [\frac{\pi}{2k} - 1]\mu_k - 1 \} + \frac{1}{2} g \left(\frac{\pi}{2} \right)^2$$
Particle Kinetics: Path Coord Example

Given:
- A box of mass \(m \) (particle) is released from rest @ top of a smooth circular track.

Find:
(A) Normal force \(N \) as a function of position \(\theta \) along the circular track.
(B) The angular velocity \((\omega) \) of the pulley B such that the boxes don't slide onto the conveyor belt.

Solution:
- FBD of box in general position - working over motion interval \(A-B \), then instantaneous @ B!
 - Track smooth \(\Rightarrow \mu = 0 \), no friction!
- Attach normal-tangential coordinate axes
- Newton’s Laws for general \(\theta \)
 \[
 \sum F_n = N - mg \sin \theta = ma_n \]
 \[
 \sum F_t = mg \cos \theta = ma_t
 \]
- Must use kinematics to resolve unknowns!

Solution (cont'd):
- Kinematics: Circular track -> path coord
 \[
 \sum F_n = N - mg \sin \theta = ma_n = m \frac{v^2}{R}
 \]
 \[
 \sum F_t = mg \cos \theta = ma_t = m v = m s
 \]
- Using tangential direction to resolve velocity by integrating alternate form \(\Rightarrow \int_0^v dv = \int_0^\theta gR \cos \theta d\theta \)
 \[
 a_t = s = g \cos \theta \quad s = R \theta \Rightarrow ds = R d\theta
 \]
 \[
 \int_0^v dv = \int_0^\theta gR \cos \theta d\theta
 \]
 \[
 \frac{1}{2} v^2 = gR \sin \theta \bigg|_0^\theta = gR \sin \theta \quad \Rightarrow \quad N = m \frac{v^2}{R} + mg \sin \theta
 \]
 \[
 v^2 = 2gR \sin \theta
 \]
 \[
 N = 3mg \sin \theta
 \]
Solution (cont’d):

- Belt Kinematics:
 - From previous page, the box speed as it reaches B
 \[v = \sqrt{2gR\sin\theta} \]
 \[= \sqrt{\frac{2g}{2}} = \sqrt{2gR} \]
 - Belt must move at the same speed to avoid slip, i.e. relative velocity between belt/box is zero
 \[v_B = v_{belt} \]
 \[\sqrt{2gR} = \omega r \]

 (B) \[\omega = \frac{\sqrt{2gR}}{r} \]