

Electrical and Computer Engineering

FE Review

John Scalzo, Senior Instructor jscalz1@lsu.edu

LSU

Topics to Cover in the ECE review for the FE:

- Physics Review Capacitance
- Direct Current
- Resistance
- KVL, KCL
- Charging/Discharging a Capacitor
- Inductance
- Symbols
- Complex Numbers
- AC Circuits
- Complex Power

	Mathematics	complex algebra, Laplace transforms, vector	
LSU	Probability and Statistics	normal distribution - device tolerances	EE 3150
	Ethics and Professional Practice	IEEE Code of Ethics	
	Engineering Economics	project management	IE 3201
	Properties of Electrical Materials	conductors, semiconductors and insulators	EE 2230, 3232
	Engineering Sciences	electrostatics and electrmagnetics	PHYS 2113
	Circuit Analysis (DC and AC Steady State)	KCL, KVL	EE 2120, 2130
	Linear Systems	Poperties of Linear, time-invariant systems - convolution, modeling, Laplace transform analysis	EE 3610
	Signal Processing	continuous and discrete time processing, sampling, Fourier analysis	EE 3160, 3610
	Electronics	diodes, op-amps, transistors and applications	EE 3220
	Power	3-phase power, power factor and correction, synchronous generator	EE 3410
	Electromagnetics	static and dynamic fields, electromagnetic waves, tranmission lines	EE 3320
	Control Systems	open loop and closed loop control, feedback systems	EE 3530
	Communications	Digital coding of analog information, transmission, modulation, decision theory	EE 4625
	Computer Networks	Network topology and architecture, protocal layers, security	EE 3710
	Digital Systems	HDL, structural and behavioral models, synthesis, coding strategies for digital circuits	EE 4755

2/8/2018

and the second second second

into fair the same of Second and

1000

and the risk

And a second second second second

Physics Review:

• Electric Field due to a single charge

$$E = k \frac{q}{r^2}$$
 $k = 8.89 \text{x} 10^9 \text{ Nm}^2/\text{C}^2$

• Uniform electric field due to a uniform distribution of surface charge (Gauss's law):

$$E = \frac{\sigma}{\epsilon_0} \rightarrow \frac{\text{surface charge density}}{\text{permittivity of free space}}$$

• Electric potential due to a single charge:

$$V = \frac{kq}{r}$$

• Potential difference in uniform electric field:

$$\Delta V = Ed$$

• Potential Energy:

$$\Delta U = q \Delta V$$

• Charge in a uniform electric field: F = qE qE=ma $q\Delta V = K_f - K_i$

Examples 1,2,3

$$\mathcal{E}_{o} = 8.85 \times 10^{-12} \text{ F/m}$$

FOR ANY MATERIAL $\mathcal{E} = \mathcal{E}_{r} \mathcal{E}_{o}$
 $\mathcal{E}_{r} \stackrel{\triangle}{=} \text{RELATIVE PERMITTIVITY}$

PARALLEL 365 -> is ti, 1iz 113 US 3 C3 TC2 (+ C, Leg $\dot{L}_{S} = \dot{L}_{1} + \dot{L}_{2} + \dot{L}_{3}$ is = Ceg dus dt Cegdus = C, dus + C2 dus + C3 dus dt PARALLEZ $Ceq = C_1 + C_2 + C_3$ + VI $V_{s}\left(\frac{C_{2}}{C_{1}+C_{2}}\right)$ $V_{s}\left(\begin{array}{c} C_{1} \\ C_{1} + C_{2} \end{array}\right)$ US V2 =

⁹ LSU

Go to paper lecture notes

