Economic Analysis of Premium Efficiency and Rewind Motors:
Energy Savings and Increased Efficiency for Arkansas Row Crops Producers

Ranjit Mane, Brad Watkins, and Christopher Henry
University of Arkansas, Division of Agriculture Rice Research and Extension Center
Stuttgart, Arkansas

2016 Delta Region Farm Management and Agricultural Policy Working Group Meeting
Vicksburg, Mississippi, May 26th, 2016
Overview

– Energy Efficient Motor, Standard Efficiency Motor, Premium Efficiency Motor
 • Efficiency and Costs
– Rewind of Electric Motor
 • Cost of Rewind
– Comparison of Premium Efficiency Motor and Rewind Motors
 • Net Present Value (NPV)
 • Payback Period (PP)
– Results and Conclusion
 • Energy Saving
 • Policy Implications
Introduction

– Arkansas is 3 largest irrigated state (USDA, 2014)
 • 5 million acres
 • 13 pump per farm

– Efficiency of Pump (Gustafon et al. 2004)
 • Electric pump (50 – 99 %)
 • Diesel Pump (40 %)

– Diesel Pump to Electric Motor
 • Energy savings
 • Increased efficiency

– Energy Efficient to Premium Efficiency Motor
Premium Efficiency Motor
Need for Premium Efficiency Motor
Rewind Motor

– Motor Repairs (Nadal et al. 2002)
 • Every 5 – 7 years
 • 4 – 6 times before replaced

– Common motor repair problems
 • Replacement of rewind
 • Bearings

– Efficiency of Rewind Motor
 – As per Dept. of Energy, Office of Energy Efficiency and Renewable Energy (EERE).
 • Decrease in efficiency by 1 percent for less than 40 HP motors
 • Decrease in efficiency by 0.5 percent for more than 40 HP motors

– Motors used in Agriculture are classified as “specialty motor”
Motor Rewinding Process

Mechanical Tests
- Test Mechanical fits using calibrated outside & inside micrometers - Peening, Metalizing, Sleeving

Initial Winding Tests
- Megger Test – Leakage to the ground
- Phase to phase tests
- Disassembly, Cleaning, Drying
- AC/DC High Potential Test
- Comparison tested to test shorts within windings

Coil Removal
- Direct flame, Chemical Stripping, Burnout,
- Mechanical Stripping – Thumm Method, Water Blasting, Hot Vapor Chemical Strip
- Clean Stator

Stator Winding
- Winding with proper insulation in the stator slots

Post Winding Tests
- Megger Test, Hi-pot test, Impedance & Spin Tests

Varnish Insulation
- Dip and Brake, Trickle Varnishing, Vacuum Pressure, Impregnation

Final Tests
- Megger Test, Current and Voltage Measurements, Temperature Measurements

Source: Sahni and Boustani, (2010)
Comparison of Premium\(^1\), Energy Efficient\(^1\), Standard Efficiency and Rewind\(^2\) Motor

Source: \(^1\)NEMA , \(^2\)Authors Estimates
Objective

– Compare investment decision on a premium efficiency motor and a rewind motor using Net Present Value and Pay back Period.
Data and Methodology

– Data
 • US Motor (NIDEC Motor Corporation)
 • Cost of Rewind
 – Entergy Arkansas, Inc.
 – Layne, Stuttgart
 – T and W Electric, Pine Bluff

– Methodology
 • Net Present Value (NPV)
 • Payback Period (PP)
Assumptions

- Electric Motor
 - OPH (Operating Hours Per Year): 1300 hrs
 - Price of Energy: 0.12 \$/kWh
 - Life expectancy of motor: 23 Years

- Cost of Rewind
 - 65% of a new standard efficiency motor (Entergy Inc.)
 - Survey results for Arkansas
 - 40 HP: 24% - 67%
 - 75 HP: 21% - 58%
 - 200 HP: 18% - 46%
Cost of Electric Motor

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>10 HP</th>
<th>20 HP</th>
<th>30 HP</th>
<th>40 HP</th>
<th>50 HP</th>
<th>60 HP</th>
<th>75 HP</th>
<th>100 HP</th>
<th>200 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Efficiency</td>
<td>NA</td>
<td>4,542</td>
<td>5,709</td>
<td>7,296</td>
<td>8,317</td>
<td>9,866</td>
<td>11,505</td>
<td>15,399</td>
<td>30,810</td>
</tr>
<tr>
<td>Energy Efficient</td>
<td>3,364</td>
<td>NA</td>
<td>5,709</td>
<td>6,899</td>
<td>7,923</td>
<td>9,401</td>
<td>11,040</td>
<td>14,211</td>
<td>28,763</td>
</tr>
<tr>
<td>Standard Efficiency</td>
<td>3,751</td>
<td>3,732</td>
<td>4,685</td>
<td>5,502</td>
<td>6,526</td>
<td>7,540</td>
<td>9,178</td>
<td>11,596</td>
<td>24,221</td>
</tr>
<tr>
<td>Rewind (As good as new)</td>
<td>2,438</td>
<td>2,426</td>
<td>3,045</td>
<td>3,576</td>
<td>4,242</td>
<td>4,901</td>
<td>5,966</td>
<td>7,537</td>
<td>15,744</td>
</tr>
<tr>
<td>Rewind (Good)</td>
<td>2,438</td>
<td>2,426</td>
<td>3,045</td>
<td>3,576</td>
<td>4,242</td>
<td>4,901</td>
<td>5,966</td>
<td>7,537</td>
<td>15,744</td>
</tr>
<tr>
<td>Rewind (Fair)</td>
<td>2,438</td>
<td>2,426</td>
<td>3,045</td>
<td>3,576</td>
<td>4,242</td>
<td>4,901</td>
<td>5,966</td>
<td>7,537</td>
<td>15,744</td>
</tr>
<tr>
<td>Rewind (bad)</td>
<td>2,438</td>
<td>2,426</td>
<td>3,045</td>
<td>3,576</td>
<td>4,242</td>
<td>4,901</td>
<td>5,966</td>
<td>7,537</td>
<td>15,744</td>
</tr>
</tbody>
</table>
Operating Cost Per Year

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>10 HP</th>
<th>20 HP</th>
<th>30 HP</th>
<th>40 HP</th>
<th>50 HP</th>
<th>60 HP</th>
<th>75 HP</th>
<th>100 HP</th>
<th>200 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Efficiency</td>
<td>NA</td>
<td>2,141</td>
<td>3,212</td>
<td>4,205</td>
<td>5,234</td>
<td>6,248</td>
<td>7,809</td>
<td>10,468</td>
<td>20,738</td>
</tr>
<tr>
<td>Energy Efficient</td>
<td>1,087</td>
<td>NA</td>
<td>3,171</td>
<td>4,227</td>
<td>5,284</td>
<td>6,341</td>
<td>7,884</td>
<td>10,468</td>
<td>20,738</td>
</tr>
<tr>
<td>Standard Efficiency</td>
<td>1,131</td>
<td>2,210</td>
<td>3,290</td>
<td>4,421</td>
<td>5,483</td>
<td>6,580</td>
<td>8,090</td>
<td>10,637</td>
<td>21,024</td>
</tr>
<tr>
<td>Rewind (As good as new)</td>
<td>1,131</td>
<td>2,210</td>
<td>3,290</td>
<td>4,421</td>
<td>5,483</td>
<td>6,580</td>
<td>8,090</td>
<td>10,637</td>
<td>21,024</td>
</tr>
<tr>
<td>Rewind (Good)</td>
<td>1,157</td>
<td>2,261</td>
<td>3,365</td>
<td>4,522</td>
<td>5,608</td>
<td>6,729</td>
<td>8,271</td>
<td>10,870</td>
<td>21,481</td>
</tr>
<tr>
<td>Rewind (Fair)</td>
<td>1,276</td>
<td>2,489</td>
<td>3,700</td>
<td>4,977</td>
<td>6,167</td>
<td>7,400</td>
<td>9,081</td>
<td>11,918</td>
<td>23,524</td>
</tr>
<tr>
<td>Rewind (bad)</td>
<td>1,465</td>
<td>2,847</td>
<td>4,227</td>
<td>5,693</td>
<td>7,046</td>
<td>8,455</td>
<td>10,347</td>
<td>13,551</td>
<td>26,699</td>
</tr>
</tbody>
</table>
Payback Period

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>10 HP</th>
<th>20 HP</th>
<th>30 HP</th>
<th>40 HP</th>
<th>50 HP</th>
<th>60 HP</th>
<th>75 HP</th>
<th>100 HP</th>
<th>200 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficient</td>
<td>NA</td>
<td>∞</td>
<td>36.0</td>
<td>9.9</td>
<td>5.8</td>
<td>7.5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Standard Efficiency</td>
<td>0.0</td>
<td>16.9</td>
<td>20.2</td>
<td>10.6</td>
<td>8.9</td>
<td>8.6</td>
<td>10.6</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>Rewind (As good as new)</td>
<td>48.7</td>
<td>>60</td>
<td>>60</td>
<td>33.8</td>
<td>30.2</td>
<td>25.3</td>
<td>49.5</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>Rewind (Good)</td>
<td>19.2</td>
<td>35.9</td>
<td>34.8</td>
<td>17.0</td>
<td>15.3</td>
<td>14.2</td>
<td>17.7</td>
<td>47.9</td>
<td>55.3</td>
</tr>
<tr>
<td>Rewind (Fair)</td>
<td>5.6</td>
<td>7.3</td>
<td>6.4</td>
<td>5.6</td>
<td>5.0</td>
<td>4.9</td>
<td>5.0</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Rewind (bad)</td>
<td>2.6</td>
<td>3.3</td>
<td>2.9</td>
<td>2.7</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Net Present Value of Energy Savings

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>10 HP</th>
<th>20 HP</th>
<th>30 HP</th>
<th>40 HP</th>
<th>50 HP</th>
<th>60 HP</th>
<th>75 HP</th>
<th>100 HP</th>
<th>200 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficient</td>
<td>NA</td>
<td>-583</td>
<td>-79</td>
<td>318</td>
<td>857</td>
<td>592</td>
<td>-1,188</td>
<td>-2,047</td>
<td></td>
</tr>
<tr>
<td>Standard Efficiency</td>
<td>1,033</td>
<td>172</td>
<td>84</td>
<td>1,264</td>
<td>1,739</td>
<td>2,378</td>
<td>1,649</td>
<td>-1,414</td>
<td>-2,536</td>
</tr>
<tr>
<td>Rewind (As good as new)</td>
<td>-280</td>
<td>-1,135</td>
<td>-1,556</td>
<td>-662</td>
<td>-545</td>
<td>-261</td>
<td>-1,563</td>
<td>-5,473</td>
<td>-11,013</td>
</tr>
<tr>
<td>Rewind (Good)</td>
<td>113</td>
<td>-420</td>
<td>-500</td>
<td>768</td>
<td>1,214</td>
<td>1,850</td>
<td>989</td>
<td>-2,166</td>
<td>4,554</td>
</tr>
<tr>
<td>Rewind (Fair)</td>
<td>1,887</td>
<td>2,799</td>
<td>4,248</td>
<td>7,205</td>
<td>9,128</td>
<td>11,346</td>
<td>12,447</td>
<td>12,658</td>
<td>24,355</td>
</tr>
<tr>
<td>Rewind (bad)</td>
<td>4,697</td>
<td>7,865</td>
<td>11,706</td>
<td>17,337</td>
<td>21,557</td>
<td>26,261</td>
<td>30,365</td>
<td>35,755</td>
<td>69,270</td>
</tr>
</tbody>
</table>
Decision Matrix

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>10 HP</th>
<th>20 HP</th>
<th>30 HP</th>
<th>40 HP</th>
<th>50 HP</th>
<th>60 HP</th>
<th>75 HP</th>
<th>100 HP</th>
<th>200 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficient</td>
<td>NA</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Standard Efficiency</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Rewind (As good as new)</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Rewind (Good)</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Rewind (Fair)</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Rewind (bad)</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Results and Conclusions

– Premium Efficiency Motor
 • 10 HP – 200 HP
 – No investment if rewind is as good as new
 • 20 – 30 HP and 100 – 200 HP
 – No investment if rewind is good

– Rewind of Electric Motor
 • Cost of Rewind
 • Quality of Rewind : EASA Certification

 • Manufacturing based on NEMA Premium Efficiency Motor
Thank You !